Step |
Hyp |
Ref |
Expression |
1 |
|
funcres.f |
|- ( ph -> F e. ( C Func D ) ) |
2 |
|
funcres.h |
|- ( ph -> H e. ( Subcat ` C ) ) |
3 |
1 2
|
resfval |
|- ( ph -> ( F |`f H ) = <. ( ( 1st ` F ) |` dom dom H ) , ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) >. ) |
4 |
3
|
fveq2d |
|- ( ph -> ( 2nd ` ( F |`f H ) ) = ( 2nd ` <. ( ( 1st ` F ) |` dom dom H ) , ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) >. ) ) |
5 |
|
fvex |
|- ( 1st ` F ) e. _V |
6 |
5
|
resex |
|- ( ( 1st ` F ) |` dom dom H ) e. _V |
7 |
|
dmexg |
|- ( H e. ( Subcat ` C ) -> dom H e. _V ) |
8 |
|
mptexg |
|- ( dom H e. _V -> ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) e. _V ) |
9 |
2 7 8
|
3syl |
|- ( ph -> ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) e. _V ) |
10 |
|
op2ndg |
|- ( ( ( ( 1st ` F ) |` dom dom H ) e. _V /\ ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) e. _V ) -> ( 2nd ` <. ( ( 1st ` F ) |` dom dom H ) , ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) >. ) = ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) ) |
11 |
6 9 10
|
sylancr |
|- ( ph -> ( 2nd ` <. ( ( 1st ` F ) |` dom dom H ) , ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) >. ) = ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) ) |
12 |
4 11
|
eqtrd |
|- ( ph -> ( 2nd ` ( F |`f H ) ) = ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) ) |
13 |
12
|
opeq2d |
|- ( ph -> <. ( ( 1st ` F ) |` dom dom H ) , ( 2nd ` ( F |`f H ) ) >. = <. ( ( 1st ` F ) |` dom dom H ) , ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) >. ) |
14 |
3 13
|
eqtr4d |
|- ( ph -> ( F |`f H ) = <. ( ( 1st ` F ) |` dom dom H ) , ( 2nd ` ( F |`f H ) ) >. ) |
15 |
|
eqid |
|- ( Base ` ( C |`cat H ) ) = ( Base ` ( C |`cat H ) ) |
16 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
17 |
|
eqid |
|- ( Hom ` ( C |`cat H ) ) = ( Hom ` ( C |`cat H ) ) |
18 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
19 |
|
eqid |
|- ( Id ` ( C |`cat H ) ) = ( Id ` ( C |`cat H ) ) |
20 |
|
eqid |
|- ( Id ` D ) = ( Id ` D ) |
21 |
|
eqid |
|- ( comp ` ( C |`cat H ) ) = ( comp ` ( C |`cat H ) ) |
22 |
|
eqid |
|- ( comp ` D ) = ( comp ` D ) |
23 |
|
eqid |
|- ( C |`cat H ) = ( C |`cat H ) |
24 |
23 2
|
subccat |
|- ( ph -> ( C |`cat H ) e. Cat ) |
25 |
|
funcrcl |
|- ( F e. ( C Func D ) -> ( C e. Cat /\ D e. Cat ) ) |
26 |
1 25
|
syl |
|- ( ph -> ( C e. Cat /\ D e. Cat ) ) |
27 |
26
|
simprd |
|- ( ph -> D e. Cat ) |
28 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
29 |
|
relfunc |
|- Rel ( C Func D ) |
30 |
|
1st2ndbr |
|- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
31 |
29 1 30
|
sylancr |
|- ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
32 |
28 16 31
|
funcf1 |
|- ( ph -> ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) ) |
33 |
|
eqidd |
|- ( ph -> dom dom H = dom dom H ) |
34 |
2 33
|
subcfn |
|- ( ph -> H Fn ( dom dom H X. dom dom H ) ) |
35 |
2 34 28
|
subcss1 |
|- ( ph -> dom dom H C_ ( Base ` C ) ) |
36 |
32 35
|
fssresd |
|- ( ph -> ( ( 1st ` F ) |` dom dom H ) : dom dom H --> ( Base ` D ) ) |
37 |
26
|
simpld |
|- ( ph -> C e. Cat ) |
38 |
23 28 37 34 35
|
rescbas |
|- ( ph -> dom dom H = ( Base ` ( C |`cat H ) ) ) |
39 |
38
|
feq2d |
|- ( ph -> ( ( ( 1st ` F ) |` dom dom H ) : dom dom H --> ( Base ` D ) <-> ( ( 1st ` F ) |` dom dom H ) : ( Base ` ( C |`cat H ) ) --> ( Base ` D ) ) ) |
40 |
36 39
|
mpbid |
|- ( ph -> ( ( 1st ` F ) |` dom dom H ) : ( Base ` ( C |`cat H ) ) --> ( Base ` D ) ) |
41 |
|
fvex |
|- ( ( 2nd ` F ) ` z ) e. _V |
42 |
41
|
resex |
|- ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) e. _V |
43 |
|
eqid |
|- ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) = ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) |
44 |
42 43
|
fnmpti |
|- ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) Fn dom H |
45 |
12
|
eqcomd |
|- ( ph -> ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) = ( 2nd ` ( F |`f H ) ) ) |
46 |
|
fndm |
|- ( H Fn ( dom dom H X. dom dom H ) -> dom H = ( dom dom H X. dom dom H ) ) |
47 |
34 46
|
syl |
|- ( ph -> dom H = ( dom dom H X. dom dom H ) ) |
48 |
38
|
sqxpeqd |
|- ( ph -> ( dom dom H X. dom dom H ) = ( ( Base ` ( C |`cat H ) ) X. ( Base ` ( C |`cat H ) ) ) ) |
49 |
47 48
|
eqtrd |
|- ( ph -> dom H = ( ( Base ` ( C |`cat H ) ) X. ( Base ` ( C |`cat H ) ) ) ) |
50 |
45 49
|
fneq12d |
|- ( ph -> ( ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) Fn dom H <-> ( 2nd ` ( F |`f H ) ) Fn ( ( Base ` ( C |`cat H ) ) X. ( Base ` ( C |`cat H ) ) ) ) ) |
51 |
44 50
|
mpbii |
|- ( ph -> ( 2nd ` ( F |`f H ) ) Fn ( ( Base ` ( C |`cat H ) ) X. ( Base ` ( C |`cat H ) ) ) ) |
52 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
53 |
31
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
54 |
35
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> dom dom H C_ ( Base ` C ) ) |
55 |
|
simprl |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> x e. ( Base ` ( C |`cat H ) ) ) |
56 |
38
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> dom dom H = ( Base ` ( C |`cat H ) ) ) |
57 |
55 56
|
eleqtrrd |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> x e. dom dom H ) |
58 |
54 57
|
sseldd |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> x e. ( Base ` C ) ) |
59 |
|
simprr |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> y e. ( Base ` ( C |`cat H ) ) ) |
60 |
59 56
|
eleqtrrd |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> y e. dom dom H ) |
61 |
54 60
|
sseldd |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> y e. ( Base ` C ) ) |
62 |
28 52 18 53 58 61
|
funcf2 |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> ( x ( 2nd ` F ) y ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) |
63 |
2
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> H e. ( Subcat ` C ) ) |
64 |
34
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> H Fn ( dom dom H X. dom dom H ) ) |
65 |
63 64 52 57 60
|
subcss2 |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> ( x H y ) C_ ( x ( Hom ` C ) y ) ) |
66 |
62 65
|
fssresd |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> ( ( x ( 2nd ` F ) y ) |` ( x H y ) ) : ( x H y ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) |
67 |
1
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> F e. ( C Func D ) ) |
68 |
67 63 64 57 60
|
resf2nd |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> ( x ( 2nd ` ( F |`f H ) ) y ) = ( ( x ( 2nd ` F ) y ) |` ( x H y ) ) ) |
69 |
68
|
feq1d |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> ( ( x ( 2nd ` ( F |`f H ) ) y ) : ( x H y ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) <-> ( ( x ( 2nd ` F ) y ) |` ( x H y ) ) : ( x H y ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) ) |
70 |
66 69
|
mpbird |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> ( x ( 2nd ` ( F |`f H ) ) y ) : ( x H y ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) |
71 |
23 28 37 34 35
|
reschom |
|- ( ph -> H = ( Hom ` ( C |`cat H ) ) ) |
72 |
71
|
adantr |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> H = ( Hom ` ( C |`cat H ) ) ) |
73 |
72
|
oveqd |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> ( x H y ) = ( x ( Hom ` ( C |`cat H ) ) y ) ) |
74 |
57
|
fvresd |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> ( ( ( 1st ` F ) |` dom dom H ) ` x ) = ( ( 1st ` F ) ` x ) ) |
75 |
60
|
fvresd |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> ( ( ( 1st ` F ) |` dom dom H ) ` y ) = ( ( 1st ` F ) ` y ) ) |
76 |
74 75
|
oveq12d |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> ( ( ( ( 1st ` F ) |` dom dom H ) ` x ) ( Hom ` D ) ( ( ( 1st ` F ) |` dom dom H ) ` y ) ) = ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) |
77 |
76
|
eqcomd |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) = ( ( ( ( 1st ` F ) |` dom dom H ) ` x ) ( Hom ` D ) ( ( ( 1st ` F ) |` dom dom H ) ` y ) ) ) |
78 |
73 77
|
feq23d |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> ( ( x ( 2nd ` ( F |`f H ) ) y ) : ( x H y ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) <-> ( x ( 2nd ` ( F |`f H ) ) y ) : ( x ( Hom ` ( C |`cat H ) ) y ) --> ( ( ( ( 1st ` F ) |` dom dom H ) ` x ) ( Hom ` D ) ( ( ( 1st ` F ) |` dom dom H ) ` y ) ) ) ) |
79 |
70 78
|
mpbid |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> ( x ( 2nd ` ( F |`f H ) ) y ) : ( x ( Hom ` ( C |`cat H ) ) y ) --> ( ( ( ( 1st ` F ) |` dom dom H ) ` x ) ( Hom ` D ) ( ( ( 1st ` F ) |` dom dom H ) ` y ) ) ) |
80 |
1
|
adantr |
|- ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> F e. ( C Func D ) ) |
81 |
2
|
adantr |
|- ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> H e. ( Subcat ` C ) ) |
82 |
34
|
adantr |
|- ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> H Fn ( dom dom H X. dom dom H ) ) |
83 |
38
|
eleq2d |
|- ( ph -> ( x e. dom dom H <-> x e. ( Base ` ( C |`cat H ) ) ) ) |
84 |
83
|
biimpar |
|- ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> x e. dom dom H ) |
85 |
80 81 82 84 84
|
resf2nd |
|- ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> ( x ( 2nd ` ( F |`f H ) ) x ) = ( ( x ( 2nd ` F ) x ) |` ( x H x ) ) ) |
86 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
87 |
23 81 82 86 84
|
subcid |
|- ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> ( ( Id ` C ) ` x ) = ( ( Id ` ( C |`cat H ) ) ` x ) ) |
88 |
87
|
eqcomd |
|- ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> ( ( Id ` ( C |`cat H ) ) ` x ) = ( ( Id ` C ) ` x ) ) |
89 |
85 88
|
fveq12d |
|- ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> ( ( x ( 2nd ` ( F |`f H ) ) x ) ` ( ( Id ` ( C |`cat H ) ) ` x ) ) = ( ( ( x ( 2nd ` F ) x ) |` ( x H x ) ) ` ( ( Id ` C ) ` x ) ) ) |
90 |
31
|
adantr |
|- ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
91 |
38 35
|
eqsstrrd |
|- ( ph -> ( Base ` ( C |`cat H ) ) C_ ( Base ` C ) ) |
92 |
91
|
sselda |
|- ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> x e. ( Base ` C ) ) |
93 |
28 86 20 90 92
|
funcid |
|- ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> ( ( x ( 2nd ` F ) x ) ` ( ( Id ` C ) ` x ) ) = ( ( Id ` D ) ` ( ( 1st ` F ) ` x ) ) ) |
94 |
81 82 84 86
|
subcidcl |
|- ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> ( ( Id ` C ) ` x ) e. ( x H x ) ) |
95 |
94
|
fvresd |
|- ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> ( ( ( x ( 2nd ` F ) x ) |` ( x H x ) ) ` ( ( Id ` C ) ` x ) ) = ( ( x ( 2nd ` F ) x ) ` ( ( Id ` C ) ` x ) ) ) |
96 |
84
|
fvresd |
|- ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> ( ( ( 1st ` F ) |` dom dom H ) ` x ) = ( ( 1st ` F ) ` x ) ) |
97 |
96
|
fveq2d |
|- ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> ( ( Id ` D ) ` ( ( ( 1st ` F ) |` dom dom H ) ` x ) ) = ( ( Id ` D ) ` ( ( 1st ` F ) ` x ) ) ) |
98 |
93 95 97
|
3eqtr4d |
|- ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> ( ( ( x ( 2nd ` F ) x ) |` ( x H x ) ) ` ( ( Id ` C ) ` x ) ) = ( ( Id ` D ) ` ( ( ( 1st ` F ) |` dom dom H ) ` x ) ) ) |
99 |
89 98
|
eqtrd |
|- ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> ( ( x ( 2nd ` ( F |`f H ) ) x ) ` ( ( Id ` ( C |`cat H ) ) ` x ) ) = ( ( Id ` D ) ` ( ( ( 1st ` F ) |` dom dom H ) ` x ) ) ) |
100 |
2
|
3ad2ant1 |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> H e. ( Subcat ` C ) ) |
101 |
34
|
3ad2ant1 |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> H Fn ( dom dom H X. dom dom H ) ) |
102 |
|
simp21 |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> x e. ( Base ` ( C |`cat H ) ) ) |
103 |
38
|
3ad2ant1 |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> dom dom H = ( Base ` ( C |`cat H ) ) ) |
104 |
102 103
|
eleqtrrd |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> x e. dom dom H ) |
105 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
106 |
|
simp22 |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> y e. ( Base ` ( C |`cat H ) ) ) |
107 |
106 103
|
eleqtrrd |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> y e. dom dom H ) |
108 |
|
simp23 |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> z e. ( Base ` ( C |`cat H ) ) ) |
109 |
108 103
|
eleqtrrd |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> z e. dom dom H ) |
110 |
|
simp3l |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> f e. ( x ( Hom ` ( C |`cat H ) ) y ) ) |
111 |
71
|
3ad2ant1 |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> H = ( Hom ` ( C |`cat H ) ) ) |
112 |
111
|
oveqd |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( x H y ) = ( x ( Hom ` ( C |`cat H ) ) y ) ) |
113 |
110 112
|
eleqtrrd |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> f e. ( x H y ) ) |
114 |
|
simp3r |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) |
115 |
111
|
oveqd |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( y H z ) = ( y ( Hom ` ( C |`cat H ) ) z ) ) |
116 |
114 115
|
eleqtrrd |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> g e. ( y H z ) ) |
117 |
100 101 104 105 107 109 113 116
|
subccocl |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x H z ) ) |
118 |
117
|
fvresd |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( ( ( x ( 2nd ` F ) z ) |` ( x H z ) ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( x ( 2nd ` F ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) |
119 |
31
|
3ad2ant1 |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
120 |
35
|
3ad2ant1 |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> dom dom H C_ ( Base ` C ) ) |
121 |
120 104
|
sseldd |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> x e. ( Base ` C ) ) |
122 |
120 107
|
sseldd |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> y e. ( Base ` C ) ) |
123 |
120 109
|
sseldd |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> z e. ( Base ` C ) ) |
124 |
100 101 52 104 107
|
subcss2 |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( x H y ) C_ ( x ( Hom ` C ) y ) ) |
125 |
124 113
|
sseldd |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> f e. ( x ( Hom ` C ) y ) ) |
126 |
100 101 52 107 109
|
subcss2 |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( y H z ) C_ ( y ( Hom ` C ) z ) ) |
127 |
126 116
|
sseldd |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> g e. ( y ( Hom ` C ) z ) ) |
128 |
28 52 105 22 119 121 122 123 125 127
|
funcco |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( ( x ( 2nd ` F ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( y ( 2nd ` F ) z ) ` g ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) ) |
129 |
118 128
|
eqtrd |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( ( ( x ( 2nd ` F ) z ) |` ( x H z ) ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( y ( 2nd ` F ) z ) ` g ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) ) |
130 |
1
|
3ad2ant1 |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> F e. ( C Func D ) ) |
131 |
130 100 101 104 109
|
resf2nd |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( x ( 2nd ` ( F |`f H ) ) z ) = ( ( x ( 2nd ` F ) z ) |` ( x H z ) ) ) |
132 |
23 28 37 34 35 105
|
rescco |
|- ( ph -> ( comp ` C ) = ( comp ` ( C |`cat H ) ) ) |
133 |
132
|
3ad2ant1 |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( comp ` C ) = ( comp ` ( C |`cat H ) ) ) |
134 |
133
|
eqcomd |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( comp ` ( C |`cat H ) ) = ( comp ` C ) ) |
135 |
134
|
oveqd |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( <. x , y >. ( comp ` ( C |`cat H ) ) z ) = ( <. x , y >. ( comp ` C ) z ) ) |
136 |
135
|
oveqd |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( g ( <. x , y >. ( comp ` ( C |`cat H ) ) z ) f ) = ( g ( <. x , y >. ( comp ` C ) z ) f ) ) |
137 |
131 136
|
fveq12d |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( ( x ( 2nd ` ( F |`f H ) ) z ) ` ( g ( <. x , y >. ( comp ` ( C |`cat H ) ) z ) f ) ) = ( ( ( x ( 2nd ` F ) z ) |` ( x H z ) ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) ) |
138 |
104
|
fvresd |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( ( ( 1st ` F ) |` dom dom H ) ` x ) = ( ( 1st ` F ) ` x ) ) |
139 |
107
|
fvresd |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( ( ( 1st ` F ) |` dom dom H ) ` y ) = ( ( 1st ` F ) ` y ) ) |
140 |
138 139
|
opeq12d |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> <. ( ( ( 1st ` F ) |` dom dom H ) ` x ) , ( ( ( 1st ` F ) |` dom dom H ) ` y ) >. = <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ) |
141 |
109
|
fvresd |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( ( ( 1st ` F ) |` dom dom H ) ` z ) = ( ( 1st ` F ) ` z ) ) |
142 |
140 141
|
oveq12d |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( <. ( ( ( 1st ` F ) |` dom dom H ) ` x ) , ( ( ( 1st ` F ) |` dom dom H ) ` y ) >. ( comp ` D ) ( ( ( 1st ` F ) |` dom dom H ) ` z ) ) = ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ) |
143 |
130 100 101 107 109
|
resf2nd |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( y ( 2nd ` ( F |`f H ) ) z ) = ( ( y ( 2nd ` F ) z ) |` ( y H z ) ) ) |
144 |
143
|
fveq1d |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( ( y ( 2nd ` ( F |`f H ) ) z ) ` g ) = ( ( ( y ( 2nd ` F ) z ) |` ( y H z ) ) ` g ) ) |
145 |
116
|
fvresd |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( ( ( y ( 2nd ` F ) z ) |` ( y H z ) ) ` g ) = ( ( y ( 2nd ` F ) z ) ` g ) ) |
146 |
144 145
|
eqtrd |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( ( y ( 2nd ` ( F |`f H ) ) z ) ` g ) = ( ( y ( 2nd ` F ) z ) ` g ) ) |
147 |
130 100 101 104 107
|
resf2nd |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( x ( 2nd ` ( F |`f H ) ) y ) = ( ( x ( 2nd ` F ) y ) |` ( x H y ) ) ) |
148 |
147
|
fveq1d |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( ( x ( 2nd ` ( F |`f H ) ) y ) ` f ) = ( ( ( x ( 2nd ` F ) y ) |` ( x H y ) ) ` f ) ) |
149 |
113
|
fvresd |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( ( ( x ( 2nd ` F ) y ) |` ( x H y ) ) ` f ) = ( ( x ( 2nd ` F ) y ) ` f ) ) |
150 |
148 149
|
eqtrd |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( ( x ( 2nd ` ( F |`f H ) ) y ) ` f ) = ( ( x ( 2nd ` F ) y ) ` f ) ) |
151 |
142 146 150
|
oveq123d |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( ( ( y ( 2nd ` ( F |`f H ) ) z ) ` g ) ( <. ( ( ( 1st ` F ) |` dom dom H ) ` x ) , ( ( ( 1st ` F ) |` dom dom H ) ` y ) >. ( comp ` D ) ( ( ( 1st ` F ) |` dom dom H ) ` z ) ) ( ( x ( 2nd ` ( F |`f H ) ) y ) ` f ) ) = ( ( ( y ( 2nd ` F ) z ) ` g ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) ) |
152 |
129 137 151
|
3eqtr4d |
|- ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( ( x ( 2nd ` ( F |`f H ) ) z ) ` ( g ( <. x , y >. ( comp ` ( C |`cat H ) ) z ) f ) ) = ( ( ( y ( 2nd ` ( F |`f H ) ) z ) ` g ) ( <. ( ( ( 1st ` F ) |` dom dom H ) ` x ) , ( ( ( 1st ` F ) |` dom dom H ) ` y ) >. ( comp ` D ) ( ( ( 1st ` F ) |` dom dom H ) ` z ) ) ( ( x ( 2nd ` ( F |`f H ) ) y ) ` f ) ) ) |
153 |
15 16 17 18 19 20 21 22 24 27 40 51 79 99 152
|
isfuncd |
|- ( ph -> ( ( 1st ` F ) |` dom dom H ) ( ( C |`cat H ) Func D ) ( 2nd ` ( F |`f H ) ) ) |
154 |
|
df-br |
|- ( ( ( 1st ` F ) |` dom dom H ) ( ( C |`cat H ) Func D ) ( 2nd ` ( F |`f H ) ) <-> <. ( ( 1st ` F ) |` dom dom H ) , ( 2nd ` ( F |`f H ) ) >. e. ( ( C |`cat H ) Func D ) ) |
155 |
153 154
|
sylib |
|- ( ph -> <. ( ( 1st ` F ) |` dom dom H ) , ( 2nd ` ( F |`f H ) ) >. e. ( ( C |`cat H ) Func D ) ) |
156 |
14 155
|
eqeltrd |
|- ( ph -> ( F |`f H ) e. ( ( C |`cat H ) Func D ) ) |