| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							funcres.f | 
							 |-  ( ph -> F e. ( C Func D ) )  | 
						
						
							| 2 | 
							
								
							 | 
							funcres.h | 
							 |-  ( ph -> H e. ( Subcat ` C ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							resfval | 
							 |-  ( ph -> ( F |`f H ) = <. ( ( 1st ` F ) |` dom dom H ) , ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) >. )  | 
						
						
							| 4 | 
							
								3
							 | 
							fveq2d | 
							 |-  ( ph -> ( 2nd ` ( F |`f H ) ) = ( 2nd ` <. ( ( 1st ` F ) |` dom dom H ) , ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) >. ) )  | 
						
						
							| 5 | 
							
								
							 | 
							fvex | 
							 |-  ( 1st ` F ) e. _V  | 
						
						
							| 6 | 
							
								5
							 | 
							resex | 
							 |-  ( ( 1st ` F ) |` dom dom H ) e. _V  | 
						
						
							| 7 | 
							
								
							 | 
							dmexg | 
							 |-  ( H e. ( Subcat ` C ) -> dom H e. _V )  | 
						
						
							| 8 | 
							
								
							 | 
							mptexg | 
							 |-  ( dom H e. _V -> ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) e. _V )  | 
						
						
							| 9 | 
							
								2 7 8
							 | 
							3syl | 
							 |-  ( ph -> ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) e. _V )  | 
						
						
							| 10 | 
							
								
							 | 
							op2ndg | 
							 |-  ( ( ( ( 1st ` F ) |` dom dom H ) e. _V /\ ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) e. _V ) -> ( 2nd ` <. ( ( 1st ` F ) |` dom dom H ) , ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) >. ) = ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) )  | 
						
						
							| 11 | 
							
								6 9 10
							 | 
							sylancr | 
							 |-  ( ph -> ( 2nd ` <. ( ( 1st ` F ) |` dom dom H ) , ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) >. ) = ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) )  | 
						
						
							| 12 | 
							
								4 11
							 | 
							eqtrd | 
							 |-  ( ph -> ( 2nd ` ( F |`f H ) ) = ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							opeq2d | 
							 |-  ( ph -> <. ( ( 1st ` F ) |` dom dom H ) , ( 2nd ` ( F |`f H ) ) >. = <. ( ( 1st ` F ) |` dom dom H ) , ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) >. )  | 
						
						
							| 14 | 
							
								3 13
							 | 
							eqtr4d | 
							 |-  ( ph -> ( F |`f H ) = <. ( ( 1st ` F ) |` dom dom H ) , ( 2nd ` ( F |`f H ) ) >. )  | 
						
						
							| 15 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` ( C |`cat H ) ) = ( Base ` ( C |`cat H ) )  | 
						
						
							| 16 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` D ) = ( Base ` D )  | 
						
						
							| 17 | 
							
								
							 | 
							eqid | 
							 |-  ( Hom ` ( C |`cat H ) ) = ( Hom ` ( C |`cat H ) )  | 
						
						
							| 18 | 
							
								
							 | 
							eqid | 
							 |-  ( Hom ` D ) = ( Hom ` D )  | 
						
						
							| 19 | 
							
								
							 | 
							eqid | 
							 |-  ( Id ` ( C |`cat H ) ) = ( Id ` ( C |`cat H ) )  | 
						
						
							| 20 | 
							
								
							 | 
							eqid | 
							 |-  ( Id ` D ) = ( Id ` D )  | 
						
						
							| 21 | 
							
								
							 | 
							eqid | 
							 |-  ( comp ` ( C |`cat H ) ) = ( comp ` ( C |`cat H ) )  | 
						
						
							| 22 | 
							
								
							 | 
							eqid | 
							 |-  ( comp ` D ) = ( comp ` D )  | 
						
						
							| 23 | 
							
								
							 | 
							eqid | 
							 |-  ( C |`cat H ) = ( C |`cat H )  | 
						
						
							| 24 | 
							
								23 2
							 | 
							subccat | 
							 |-  ( ph -> ( C |`cat H ) e. Cat )  | 
						
						
							| 25 | 
							
								
							 | 
							funcrcl | 
							 |-  ( F e. ( C Func D ) -> ( C e. Cat /\ D e. Cat ) )  | 
						
						
							| 26 | 
							
								1 25
							 | 
							syl | 
							 |-  ( ph -> ( C e. Cat /\ D e. Cat ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							simprd | 
							 |-  ( ph -> D e. Cat )  | 
						
						
							| 28 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` C ) = ( Base ` C )  | 
						
						
							| 29 | 
							
								
							 | 
							relfunc | 
							 |-  Rel ( C Func D )  | 
						
						
							| 30 | 
							
								
							 | 
							1st2ndbr | 
							 |-  ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) )  | 
						
						
							| 31 | 
							
								29 1 30
							 | 
							sylancr | 
							 |-  ( ph -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) )  | 
						
						
							| 32 | 
							
								28 16 31
							 | 
							funcf1 | 
							 |-  ( ph -> ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) )  | 
						
						
							| 33 | 
							
								
							 | 
							eqidd | 
							 |-  ( ph -> dom dom H = dom dom H )  | 
						
						
							| 34 | 
							
								2 33
							 | 
							subcfn | 
							 |-  ( ph -> H Fn ( dom dom H X. dom dom H ) )  | 
						
						
							| 35 | 
							
								2 34 28
							 | 
							subcss1 | 
							 |-  ( ph -> dom dom H C_ ( Base ` C ) )  | 
						
						
							| 36 | 
							
								32 35
							 | 
							fssresd | 
							 |-  ( ph -> ( ( 1st ` F ) |` dom dom H ) : dom dom H --> ( Base ` D ) )  | 
						
						
							| 37 | 
							
								26
							 | 
							simpld | 
							 |-  ( ph -> C e. Cat )  | 
						
						
							| 38 | 
							
								23 28 37 34 35
							 | 
							rescbas | 
							 |-  ( ph -> dom dom H = ( Base ` ( C |`cat H ) ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							feq2d | 
							 |-  ( ph -> ( ( ( 1st ` F ) |` dom dom H ) : dom dom H --> ( Base ` D ) <-> ( ( 1st ` F ) |` dom dom H ) : ( Base ` ( C |`cat H ) ) --> ( Base ` D ) ) )  | 
						
						
							| 40 | 
							
								36 39
							 | 
							mpbid | 
							 |-  ( ph -> ( ( 1st ` F ) |` dom dom H ) : ( Base ` ( C |`cat H ) ) --> ( Base ` D ) )  | 
						
						
							| 41 | 
							
								
							 | 
							fvex | 
							 |-  ( ( 2nd ` F ) ` z ) e. _V  | 
						
						
							| 42 | 
							
								41
							 | 
							resex | 
							 |-  ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) e. _V  | 
						
						
							| 43 | 
							
								
							 | 
							eqid | 
							 |-  ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) = ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) )  | 
						
						
							| 44 | 
							
								42 43
							 | 
							fnmpti | 
							 |-  ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) Fn dom H  | 
						
						
							| 45 | 
							
								12
							 | 
							eqcomd | 
							 |-  ( ph -> ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) = ( 2nd ` ( F |`f H ) ) )  | 
						
						
							| 46 | 
							
								
							 | 
							fndm | 
							 |-  ( H Fn ( dom dom H X. dom dom H ) -> dom H = ( dom dom H X. dom dom H ) )  | 
						
						
							| 47 | 
							
								34 46
							 | 
							syl | 
							 |-  ( ph -> dom H = ( dom dom H X. dom dom H ) )  | 
						
						
							| 48 | 
							
								38
							 | 
							sqxpeqd | 
							 |-  ( ph -> ( dom dom H X. dom dom H ) = ( ( Base ` ( C |`cat H ) ) X. ( Base ` ( C |`cat H ) ) ) )  | 
						
						
							| 49 | 
							
								47 48
							 | 
							eqtrd | 
							 |-  ( ph -> dom H = ( ( Base ` ( C |`cat H ) ) X. ( Base ` ( C |`cat H ) ) ) )  | 
						
						
							| 50 | 
							
								45 49
							 | 
							fneq12d | 
							 |-  ( ph -> ( ( z e. dom H |-> ( ( ( 2nd ` F ) ` z ) |` ( H ` z ) ) ) Fn dom H <-> ( 2nd ` ( F |`f H ) ) Fn ( ( Base ` ( C |`cat H ) ) X. ( Base ` ( C |`cat H ) ) ) ) )  | 
						
						
							| 51 | 
							
								44 50
							 | 
							mpbii | 
							 |-  ( ph -> ( 2nd ` ( F |`f H ) ) Fn ( ( Base ` ( C |`cat H ) ) X. ( Base ` ( C |`cat H ) ) ) )  | 
						
						
							| 52 | 
							
								
							 | 
							eqid | 
							 |-  ( Hom ` C ) = ( Hom ` C )  | 
						
						
							| 53 | 
							
								31
							 | 
							adantr | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) )  | 
						
						
							| 54 | 
							
								35
							 | 
							adantr | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> dom dom H C_ ( Base ` C ) )  | 
						
						
							| 55 | 
							
								
							 | 
							simprl | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> x e. ( Base ` ( C |`cat H ) ) )  | 
						
						
							| 56 | 
							
								38
							 | 
							adantr | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> dom dom H = ( Base ` ( C |`cat H ) ) )  | 
						
						
							| 57 | 
							
								55 56
							 | 
							eleqtrrd | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> x e. dom dom H )  | 
						
						
							| 58 | 
							
								54 57
							 | 
							sseldd | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> x e. ( Base ` C ) )  | 
						
						
							| 59 | 
							
								
							 | 
							simprr | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> y e. ( Base ` ( C |`cat H ) ) )  | 
						
						
							| 60 | 
							
								59 56
							 | 
							eleqtrrd | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> y e. dom dom H )  | 
						
						
							| 61 | 
							
								54 60
							 | 
							sseldd | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> y e. ( Base ` C ) )  | 
						
						
							| 62 | 
							
								28 52 18 53 58 61
							 | 
							funcf2 | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> ( x ( 2nd ` F ) y ) : ( x ( Hom ` C ) y ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) )  | 
						
						
							| 63 | 
							
								2
							 | 
							adantr | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> H e. ( Subcat ` C ) )  | 
						
						
							| 64 | 
							
								34
							 | 
							adantr | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> H Fn ( dom dom H X. dom dom H ) )  | 
						
						
							| 65 | 
							
								63 64 52 57 60
							 | 
							subcss2 | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> ( x H y ) C_ ( x ( Hom ` C ) y ) )  | 
						
						
							| 66 | 
							
								62 65
							 | 
							fssresd | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> ( ( x ( 2nd ` F ) y ) |` ( x H y ) ) : ( x H y ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) )  | 
						
						
							| 67 | 
							
								1
							 | 
							adantr | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> F e. ( C Func D ) )  | 
						
						
							| 68 | 
							
								67 63 64 57 60
							 | 
							resf2nd | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> ( x ( 2nd ` ( F |`f H ) ) y ) = ( ( x ( 2nd ` F ) y ) |` ( x H y ) ) )  | 
						
						
							| 69 | 
							
								68
							 | 
							feq1d | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> ( ( x ( 2nd ` ( F |`f H ) ) y ) : ( x H y ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) <-> ( ( x ( 2nd ` F ) y ) |` ( x H y ) ) : ( x H y ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) )  | 
						
						
							| 70 | 
							
								66 69
							 | 
							mpbird | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> ( x ( 2nd ` ( F |`f H ) ) y ) : ( x H y ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) )  | 
						
						
							| 71 | 
							
								23 28 37 34 35
							 | 
							reschom | 
							 |-  ( ph -> H = ( Hom ` ( C |`cat H ) ) )  | 
						
						
							| 72 | 
							
								71
							 | 
							adantr | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> H = ( Hom ` ( C |`cat H ) ) )  | 
						
						
							| 73 | 
							
								72
							 | 
							oveqd | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> ( x H y ) = ( x ( Hom ` ( C |`cat H ) ) y ) )  | 
						
						
							| 74 | 
							
								57
							 | 
							fvresd | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> ( ( ( 1st ` F ) |` dom dom H ) ` x ) = ( ( 1st ` F ) ` x ) )  | 
						
						
							| 75 | 
							
								60
							 | 
							fvresd | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> ( ( ( 1st ` F ) |` dom dom H ) ` y ) = ( ( 1st ` F ) ` y ) )  | 
						
						
							| 76 | 
							
								74 75
							 | 
							oveq12d | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> ( ( ( ( 1st ` F ) |` dom dom H ) ` x ) ( Hom ` D ) ( ( ( 1st ` F ) |` dom dom H ) ` y ) ) = ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) )  | 
						
						
							| 77 | 
							
								76
							 | 
							eqcomd | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) = ( ( ( ( 1st ` F ) |` dom dom H ) ` x ) ( Hom ` D ) ( ( ( 1st ` F ) |` dom dom H ) ` y ) ) )  | 
						
						
							| 78 | 
							
								73 77
							 | 
							feq23d | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> ( ( x ( 2nd ` ( F |`f H ) ) y ) : ( x H y ) --> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) <-> ( x ( 2nd ` ( F |`f H ) ) y ) : ( x ( Hom ` ( C |`cat H ) ) y ) --> ( ( ( ( 1st ` F ) |` dom dom H ) ` x ) ( Hom ` D ) ( ( ( 1st ` F ) |` dom dom H ) ` y ) ) ) )  | 
						
						
							| 79 | 
							
								70 78
							 | 
							mpbid | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) ) ) -> ( x ( 2nd ` ( F |`f H ) ) y ) : ( x ( Hom ` ( C |`cat H ) ) y ) --> ( ( ( ( 1st ` F ) |` dom dom H ) ` x ) ( Hom ` D ) ( ( ( 1st ` F ) |` dom dom H ) ` y ) ) )  | 
						
						
							| 80 | 
							
								1
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> F e. ( C Func D ) )  | 
						
						
							| 81 | 
							
								2
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> H e. ( Subcat ` C ) )  | 
						
						
							| 82 | 
							
								34
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> H Fn ( dom dom H X. dom dom H ) )  | 
						
						
							| 83 | 
							
								38
							 | 
							eleq2d | 
							 |-  ( ph -> ( x e. dom dom H <-> x e. ( Base ` ( C |`cat H ) ) ) )  | 
						
						
							| 84 | 
							
								83
							 | 
							biimpar | 
							 |-  ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> x e. dom dom H )  | 
						
						
							| 85 | 
							
								80 81 82 84 84
							 | 
							resf2nd | 
							 |-  ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> ( x ( 2nd ` ( F |`f H ) ) x ) = ( ( x ( 2nd ` F ) x ) |` ( x H x ) ) )  | 
						
						
							| 86 | 
							
								
							 | 
							eqid | 
							 |-  ( Id ` C ) = ( Id ` C )  | 
						
						
							| 87 | 
							
								23 81 82 86 84
							 | 
							subcid | 
							 |-  ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> ( ( Id ` C ) ` x ) = ( ( Id ` ( C |`cat H ) ) ` x ) )  | 
						
						
							| 88 | 
							
								87
							 | 
							eqcomd | 
							 |-  ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> ( ( Id ` ( C |`cat H ) ) ` x ) = ( ( Id ` C ) ` x ) )  | 
						
						
							| 89 | 
							
								85 88
							 | 
							fveq12d | 
							 |-  ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> ( ( x ( 2nd ` ( F |`f H ) ) x ) ` ( ( Id ` ( C |`cat H ) ) ` x ) ) = ( ( ( x ( 2nd ` F ) x ) |` ( x H x ) ) ` ( ( Id ` C ) ` x ) ) )  | 
						
						
							| 90 | 
							
								31
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) )  | 
						
						
							| 91 | 
							
								38 35
							 | 
							eqsstrrd | 
							 |-  ( ph -> ( Base ` ( C |`cat H ) ) C_ ( Base ` C ) )  | 
						
						
							| 92 | 
							
								91
							 | 
							sselda | 
							 |-  ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> x e. ( Base ` C ) )  | 
						
						
							| 93 | 
							
								28 86 20 90 92
							 | 
							funcid | 
							 |-  ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> ( ( x ( 2nd ` F ) x ) ` ( ( Id ` C ) ` x ) ) = ( ( Id ` D ) ` ( ( 1st ` F ) ` x ) ) )  | 
						
						
							| 94 | 
							
								81 82 84 86
							 | 
							subcidcl | 
							 |-  ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> ( ( Id ` C ) ` x ) e. ( x H x ) )  | 
						
						
							| 95 | 
							
								94
							 | 
							fvresd | 
							 |-  ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> ( ( ( x ( 2nd ` F ) x ) |` ( x H x ) ) ` ( ( Id ` C ) ` x ) ) = ( ( x ( 2nd ` F ) x ) ` ( ( Id ` C ) ` x ) ) )  | 
						
						
							| 96 | 
							
								84
							 | 
							fvresd | 
							 |-  ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> ( ( ( 1st ` F ) |` dom dom H ) ` x ) = ( ( 1st ` F ) ` x ) )  | 
						
						
							| 97 | 
							
								96
							 | 
							fveq2d | 
							 |-  ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> ( ( Id ` D ) ` ( ( ( 1st ` F ) |` dom dom H ) ` x ) ) = ( ( Id ` D ) ` ( ( 1st ` F ) ` x ) ) )  | 
						
						
							| 98 | 
							
								93 95 97
							 | 
							3eqtr4d | 
							 |-  ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> ( ( ( x ( 2nd ` F ) x ) |` ( x H x ) ) ` ( ( Id ` C ) ` x ) ) = ( ( Id ` D ) ` ( ( ( 1st ` F ) |` dom dom H ) ` x ) ) )  | 
						
						
							| 99 | 
							
								89 98
							 | 
							eqtrd | 
							 |-  ( ( ph /\ x e. ( Base ` ( C |`cat H ) ) ) -> ( ( x ( 2nd ` ( F |`f H ) ) x ) ` ( ( Id ` ( C |`cat H ) ) ` x ) ) = ( ( Id ` D ) ` ( ( ( 1st ` F ) |` dom dom H ) ` x ) ) )  | 
						
						
							| 100 | 
							
								2
							 | 
							3ad2ant1 | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> H e. ( Subcat ` C ) )  | 
						
						
							| 101 | 
							
								34
							 | 
							3ad2ant1 | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> H Fn ( dom dom H X. dom dom H ) )  | 
						
						
							| 102 | 
							
								
							 | 
							simp21 | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> x e. ( Base ` ( C |`cat H ) ) )  | 
						
						
							| 103 | 
							
								38
							 | 
							3ad2ant1 | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> dom dom H = ( Base ` ( C |`cat H ) ) )  | 
						
						
							| 104 | 
							
								102 103
							 | 
							eleqtrrd | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> x e. dom dom H )  | 
						
						
							| 105 | 
							
								
							 | 
							eqid | 
							 |-  ( comp ` C ) = ( comp ` C )  | 
						
						
							| 106 | 
							
								
							 | 
							simp22 | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> y e. ( Base ` ( C |`cat H ) ) )  | 
						
						
							| 107 | 
							
								106 103
							 | 
							eleqtrrd | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> y e. dom dom H )  | 
						
						
							| 108 | 
							
								
							 | 
							simp23 | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> z e. ( Base ` ( C |`cat H ) ) )  | 
						
						
							| 109 | 
							
								108 103
							 | 
							eleqtrrd | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> z e. dom dom H )  | 
						
						
							| 110 | 
							
								
							 | 
							simp3l | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> f e. ( x ( Hom ` ( C |`cat H ) ) y ) )  | 
						
						
							| 111 | 
							
								71
							 | 
							3ad2ant1 | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> H = ( Hom ` ( C |`cat H ) ) )  | 
						
						
							| 112 | 
							
								111
							 | 
							oveqd | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( x H y ) = ( x ( Hom ` ( C |`cat H ) ) y ) )  | 
						
						
							| 113 | 
							
								110 112
							 | 
							eleqtrrd | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> f e. ( x H y ) )  | 
						
						
							| 114 | 
							
								
							 | 
							simp3r | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> g e. ( y ( Hom ` ( C |`cat H ) ) z ) )  | 
						
						
							| 115 | 
							
								111
							 | 
							oveqd | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( y H z ) = ( y ( Hom ` ( C |`cat H ) ) z ) )  | 
						
						
							| 116 | 
							
								114 115
							 | 
							eleqtrrd | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> g e. ( y H z ) )  | 
						
						
							| 117 | 
							
								100 101 104 105 107 109 113 116
							 | 
							subccocl | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x H z ) )  | 
						
						
							| 118 | 
							
								117
							 | 
							fvresd | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( ( ( x ( 2nd ` F ) z ) |` ( x H z ) ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( x ( 2nd ` F ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) )  | 
						
						
							| 119 | 
							
								31
							 | 
							3ad2ant1 | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) )  | 
						
						
							| 120 | 
							
								35
							 | 
							3ad2ant1 | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> dom dom H C_ ( Base ` C ) )  | 
						
						
							| 121 | 
							
								120 104
							 | 
							sseldd | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> x e. ( Base ` C ) )  | 
						
						
							| 122 | 
							
								120 107
							 | 
							sseldd | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> y e. ( Base ` C ) )  | 
						
						
							| 123 | 
							
								120 109
							 | 
							sseldd | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> z e. ( Base ` C ) )  | 
						
						
							| 124 | 
							
								100 101 52 104 107
							 | 
							subcss2 | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( x H y ) C_ ( x ( Hom ` C ) y ) )  | 
						
						
							| 125 | 
							
								124 113
							 | 
							sseldd | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> f e. ( x ( Hom ` C ) y ) )  | 
						
						
							| 126 | 
							
								100 101 52 107 109
							 | 
							subcss2 | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( y H z ) C_ ( y ( Hom ` C ) z ) )  | 
						
						
							| 127 | 
							
								126 116
							 | 
							sseldd | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> g e. ( y ( Hom ` C ) z ) )  | 
						
						
							| 128 | 
							
								28 52 105 22 119 121 122 123 125 127
							 | 
							funcco | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( ( x ( 2nd ` F ) z ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( y ( 2nd ` F ) z ) ` g ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) )  | 
						
						
							| 129 | 
							
								118 128
							 | 
							eqtrd | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( ( ( x ( 2nd ` F ) z ) |` ( x H z ) ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) = ( ( ( y ( 2nd ` F ) z ) ` g ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) )  | 
						
						
							| 130 | 
							
								1
							 | 
							3ad2ant1 | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> F e. ( C Func D ) )  | 
						
						
							| 131 | 
							
								130 100 101 104 109
							 | 
							resf2nd | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( x ( 2nd ` ( F |`f H ) ) z ) = ( ( x ( 2nd ` F ) z ) |` ( x H z ) ) )  | 
						
						
							| 132 | 
							
								23 28 37 34 35 105
							 | 
							rescco | 
							 |-  ( ph -> ( comp ` C ) = ( comp ` ( C |`cat H ) ) )  | 
						
						
							| 133 | 
							
								132
							 | 
							3ad2ant1 | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( comp ` C ) = ( comp ` ( C |`cat H ) ) )  | 
						
						
							| 134 | 
							
								133
							 | 
							eqcomd | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( comp ` ( C |`cat H ) ) = ( comp ` C ) )  | 
						
						
							| 135 | 
							
								134
							 | 
							oveqd | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( <. x , y >. ( comp ` ( C |`cat H ) ) z ) = ( <. x , y >. ( comp ` C ) z ) )  | 
						
						
							| 136 | 
							
								135
							 | 
							oveqd | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( g ( <. x , y >. ( comp ` ( C |`cat H ) ) z ) f ) = ( g ( <. x , y >. ( comp ` C ) z ) f ) )  | 
						
						
							| 137 | 
							
								131 136
							 | 
							fveq12d | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( ( x ( 2nd ` ( F |`f H ) ) z ) ` ( g ( <. x , y >. ( comp ` ( C |`cat H ) ) z ) f ) ) = ( ( ( x ( 2nd ` F ) z ) |` ( x H z ) ) ` ( g ( <. x , y >. ( comp ` C ) z ) f ) ) )  | 
						
						
							| 138 | 
							
								104
							 | 
							fvresd | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( ( ( 1st ` F ) |` dom dom H ) ` x ) = ( ( 1st ` F ) ` x ) )  | 
						
						
							| 139 | 
							
								107
							 | 
							fvresd | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( ( ( 1st ` F ) |` dom dom H ) ` y ) = ( ( 1st ` F ) ` y ) )  | 
						
						
							| 140 | 
							
								138 139
							 | 
							opeq12d | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> <. ( ( ( 1st ` F ) |` dom dom H ) ` x ) , ( ( ( 1st ` F ) |` dom dom H ) ` y ) >. = <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. )  | 
						
						
							| 141 | 
							
								109
							 | 
							fvresd | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( ( ( 1st ` F ) |` dom dom H ) ` z ) = ( ( 1st ` F ) ` z ) )  | 
						
						
							| 142 | 
							
								140 141
							 | 
							oveq12d | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( <. ( ( ( 1st ` F ) |` dom dom H ) ` x ) , ( ( ( 1st ` F ) |` dom dom H ) ` y ) >. ( comp ` D ) ( ( ( 1st ` F ) |` dom dom H ) ` z ) ) = ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) )  | 
						
						
							| 143 | 
							
								130 100 101 107 109
							 | 
							resf2nd | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( y ( 2nd ` ( F |`f H ) ) z ) = ( ( y ( 2nd ` F ) z ) |` ( y H z ) ) )  | 
						
						
							| 144 | 
							
								143
							 | 
							fveq1d | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( ( y ( 2nd ` ( F |`f H ) ) z ) ` g ) = ( ( ( y ( 2nd ` F ) z ) |` ( y H z ) ) ` g ) )  | 
						
						
							| 145 | 
							
								116
							 | 
							fvresd | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( ( ( y ( 2nd ` F ) z ) |` ( y H z ) ) ` g ) = ( ( y ( 2nd ` F ) z ) ` g ) )  | 
						
						
							| 146 | 
							
								144 145
							 | 
							eqtrd | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( ( y ( 2nd ` ( F |`f H ) ) z ) ` g ) = ( ( y ( 2nd ` F ) z ) ` g ) )  | 
						
						
							| 147 | 
							
								130 100 101 104 107
							 | 
							resf2nd | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( x ( 2nd ` ( F |`f H ) ) y ) = ( ( x ( 2nd ` F ) y ) |` ( x H y ) ) )  | 
						
						
							| 148 | 
							
								147
							 | 
							fveq1d | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( ( x ( 2nd ` ( F |`f H ) ) y ) ` f ) = ( ( ( x ( 2nd ` F ) y ) |` ( x H y ) ) ` f ) )  | 
						
						
							| 149 | 
							
								113
							 | 
							fvresd | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( ( ( x ( 2nd ` F ) y ) |` ( x H y ) ) ` f ) = ( ( x ( 2nd ` F ) y ) ` f ) )  | 
						
						
							| 150 | 
							
								148 149
							 | 
							eqtrd | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( ( x ( 2nd ` ( F |`f H ) ) y ) ` f ) = ( ( x ( 2nd ` F ) y ) ` f ) )  | 
						
						
							| 151 | 
							
								142 146 150
							 | 
							oveq123d | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( ( ( y ( 2nd ` ( F |`f H ) ) z ) ` g ) ( <. ( ( ( 1st ` F ) |` dom dom H ) ` x ) , ( ( ( 1st ` F ) |` dom dom H ) ` y ) >. ( comp ` D ) ( ( ( 1st ` F ) |` dom dom H ) ` z ) ) ( ( x ( 2nd ` ( F |`f H ) ) y ) ` f ) ) = ( ( ( y ( 2nd ` F ) z ) ` g ) ( <. ( ( 1st ` F ) ` x ) , ( ( 1st ` F ) ` y ) >. ( comp ` D ) ( ( 1st ` F ) ` z ) ) ( ( x ( 2nd ` F ) y ) ` f ) ) )  | 
						
						
							| 152 | 
							
								129 137 151
							 | 
							3eqtr4d | 
							 |-  ( ( ph /\ ( x e. ( Base ` ( C |`cat H ) ) /\ y e. ( Base ` ( C |`cat H ) ) /\ z e. ( Base ` ( C |`cat H ) ) ) /\ ( f e. ( x ( Hom ` ( C |`cat H ) ) y ) /\ g e. ( y ( Hom ` ( C |`cat H ) ) z ) ) ) -> ( ( x ( 2nd ` ( F |`f H ) ) z ) ` ( g ( <. x , y >. ( comp ` ( C |`cat H ) ) z ) f ) ) = ( ( ( y ( 2nd ` ( F |`f H ) ) z ) ` g ) ( <. ( ( ( 1st ` F ) |` dom dom H ) ` x ) , ( ( ( 1st ` F ) |` dom dom H ) ` y ) >. ( comp ` D ) ( ( ( 1st ` F ) |` dom dom H ) ` z ) ) ( ( x ( 2nd ` ( F |`f H ) ) y ) ` f ) ) )  | 
						
						
							| 153 | 
							
								15 16 17 18 19 20 21 22 24 27 40 51 79 99 152
							 | 
							isfuncd | 
							 |-  ( ph -> ( ( 1st ` F ) |` dom dom H ) ( ( C |`cat H ) Func D ) ( 2nd ` ( F |`f H ) ) )  | 
						
						
							| 154 | 
							
								
							 | 
							df-br | 
							 |-  ( ( ( 1st ` F ) |` dom dom H ) ( ( C |`cat H ) Func D ) ( 2nd ` ( F |`f H ) ) <-> <. ( ( 1st ` F ) |` dom dom H ) , ( 2nd ` ( F |`f H ) ) >. e. ( ( C |`cat H ) Func D ) )  | 
						
						
							| 155 | 
							
								153 154
							 | 
							sylib | 
							 |-  ( ph -> <. ( ( 1st ` F ) |` dom dom H ) , ( 2nd ` ( F |`f H ) ) >. e. ( ( C |`cat H ) Func D ) )  | 
						
						
							| 156 | 
							
								14 155
							 | 
							eqeltrd | 
							 |-  ( ph -> ( F |`f H ) e. ( ( C |`cat H ) Func D ) )  |