| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							relfunc | 
							 |-  Rel ( C Func ( D |`cat R ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							a1i | 
							 |-  ( R e. ( Subcat ` D ) -> Rel ( C Func ( D |`cat R ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							simpr | 
							 |-  ( ( R e. ( Subcat ` D ) /\ f ( C Func ( D |`cat R ) ) g ) -> f ( C Func ( D |`cat R ) ) g )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` C ) = ( Base ` C )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							 |-  ( Hom ` C ) = ( Hom ` C )  | 
						
						
							| 6 | 
							
								
							 | 
							simpl | 
							 |-  ( ( R e. ( Subcat ` D ) /\ f ( C Func ( D |`cat R ) ) g ) -> R e. ( Subcat ` D ) )  | 
						
						
							| 7 | 
							
								
							 | 
							eqidd | 
							 |-  ( ( R e. ( Subcat ` D ) /\ f ( C Func ( D |`cat R ) ) g ) -> dom dom R = dom dom R )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							subcfn | 
							 |-  ( ( R e. ( Subcat ` D ) /\ f ( C Func ( D |`cat R ) ) g ) -> R Fn ( dom dom R X. dom dom R ) )  | 
						
						
							| 9 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` ( D |`cat R ) ) = ( Base ` ( D |`cat R ) )  | 
						
						
							| 10 | 
							
								4 9 3
							 | 
							funcf1 | 
							 |-  ( ( R e. ( Subcat ` D ) /\ f ( C Func ( D |`cat R ) ) g ) -> f : ( Base ` C ) --> ( Base ` ( D |`cat R ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							 |-  ( D |`cat R ) = ( D |`cat R )  | 
						
						
							| 12 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` D ) = ( Base ` D )  | 
						
						
							| 13 | 
							
								
							 | 
							subcrcl | 
							 |-  ( R e. ( Subcat ` D ) -> D e. Cat )  | 
						
						
							| 14 | 
							
								13
							 | 
							adantr | 
							 |-  ( ( R e. ( Subcat ` D ) /\ f ( C Func ( D |`cat R ) ) g ) -> D e. Cat )  | 
						
						
							| 15 | 
							
								6 8 12
							 | 
							subcss1 | 
							 |-  ( ( R e. ( Subcat ` D ) /\ f ( C Func ( D |`cat R ) ) g ) -> dom dom R C_ ( Base ` D ) )  | 
						
						
							| 16 | 
							
								11 12 14 8 15
							 | 
							rescbas | 
							 |-  ( ( R e. ( Subcat ` D ) /\ f ( C Func ( D |`cat R ) ) g ) -> dom dom R = ( Base ` ( D |`cat R ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							feq3d | 
							 |-  ( ( R e. ( Subcat ` D ) /\ f ( C Func ( D |`cat R ) ) g ) -> ( f : ( Base ` C ) --> dom dom R <-> f : ( Base ` C ) --> ( Base ` ( D |`cat R ) ) ) )  | 
						
						
							| 18 | 
							
								10 17
							 | 
							mpbird | 
							 |-  ( ( R e. ( Subcat ` D ) /\ f ( C Func ( D |`cat R ) ) g ) -> f : ( Base ` C ) --> dom dom R )  | 
						
						
							| 19 | 
							
								
							 | 
							eqid | 
							 |-  ( Hom ` ( D |`cat R ) ) = ( Hom ` ( D |`cat R ) )  | 
						
						
							| 20 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( R e. ( Subcat ` D ) /\ f ( C Func ( D |`cat R ) ) g ) /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> f ( C Func ( D |`cat R ) ) g )  | 
						
						
							| 21 | 
							
								
							 | 
							simprl | 
							 |-  ( ( ( R e. ( Subcat ` D ) /\ f ( C Func ( D |`cat R ) ) g ) /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> x e. ( Base ` C ) )  | 
						
						
							| 22 | 
							
								
							 | 
							simprr | 
							 |-  ( ( ( R e. ( Subcat ` D ) /\ f ( C Func ( D |`cat R ) ) g ) /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> y e. ( Base ` C ) )  | 
						
						
							| 23 | 
							
								4 5 19 20 21 22
							 | 
							funcf2 | 
							 |-  ( ( ( R e. ( Subcat ` D ) /\ f ( C Func ( D |`cat R ) ) g ) /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x g y ) : ( x ( Hom ` C ) y ) --> ( ( f ` x ) ( Hom ` ( D |`cat R ) ) ( f ` y ) ) )  | 
						
						
							| 24 | 
							
								11 12 14 8 15
							 | 
							reschom | 
							 |-  ( ( R e. ( Subcat ` D ) /\ f ( C Func ( D |`cat R ) ) g ) -> R = ( Hom ` ( D |`cat R ) ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							adantr | 
							 |-  ( ( ( R e. ( Subcat ` D ) /\ f ( C Func ( D |`cat R ) ) g ) /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> R = ( Hom ` ( D |`cat R ) ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							oveqd | 
							 |-  ( ( ( R e. ( Subcat ` D ) /\ f ( C Func ( D |`cat R ) ) g ) /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( f ` x ) R ( f ` y ) ) = ( ( f ` x ) ( Hom ` ( D |`cat R ) ) ( f ` y ) ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							feq3d | 
							 |-  ( ( ( R e. ( Subcat ` D ) /\ f ( C Func ( D |`cat R ) ) g ) /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( x g y ) : ( x ( Hom ` C ) y ) --> ( ( f ` x ) R ( f ` y ) ) <-> ( x g y ) : ( x ( Hom ` C ) y ) --> ( ( f ` x ) ( Hom ` ( D |`cat R ) ) ( f ` y ) ) ) )  | 
						
						
							| 28 | 
							
								23 27
							 | 
							mpbird | 
							 |-  ( ( ( R e. ( Subcat ` D ) /\ f ( C Func ( D |`cat R ) ) g ) /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x g y ) : ( x ( Hom ` C ) y ) --> ( ( f ` x ) R ( f ` y ) ) )  | 
						
						
							| 29 | 
							
								4 5 6 8 18 28
							 | 
							funcres2b | 
							 |-  ( ( R e. ( Subcat ` D ) /\ f ( C Func ( D |`cat R ) ) g ) -> ( f ( C Func D ) g <-> f ( C Func ( D |`cat R ) ) g ) )  | 
						
						
							| 30 | 
							
								3 29
							 | 
							mpbird | 
							 |-  ( ( R e. ( Subcat ` D ) /\ f ( C Func ( D |`cat R ) ) g ) -> f ( C Func D ) g )  | 
						
						
							| 31 | 
							
								30
							 | 
							ex | 
							 |-  ( R e. ( Subcat ` D ) -> ( f ( C Func ( D |`cat R ) ) g -> f ( C Func D ) g ) )  | 
						
						
							| 32 | 
							
								
							 | 
							df-br | 
							 |-  ( f ( C Func ( D |`cat R ) ) g <-> <. f , g >. e. ( C Func ( D |`cat R ) ) )  | 
						
						
							| 33 | 
							
								
							 | 
							df-br | 
							 |-  ( f ( C Func D ) g <-> <. f , g >. e. ( C Func D ) )  | 
						
						
							| 34 | 
							
								31 32 33
							 | 
							3imtr3g | 
							 |-  ( R e. ( Subcat ` D ) -> ( <. f , g >. e. ( C Func ( D |`cat R ) ) -> <. f , g >. e. ( C Func D ) ) )  | 
						
						
							| 35 | 
							
								2 34
							 | 
							relssdv | 
							 |-  ( R e. ( Subcat ` D ) -> ( C Func ( D |`cat R ) ) C_ ( C Func D ) )  |