Step |
Hyp |
Ref |
Expression |
1 |
|
funcres2c.a |
|- A = ( Base ` C ) |
2 |
|
funcres2c.e |
|- E = ( D |`s S ) |
3 |
|
funcres2c.d |
|- ( ph -> D e. Cat ) |
4 |
|
funcres2c.r |
|- ( ph -> S e. V ) |
5 |
|
funcres2c.1 |
|- ( ph -> F : A --> S ) |
6 |
|
orc |
|- ( F ( C Func D ) G -> ( F ( C Func D ) G \/ F ( C Func E ) G ) ) |
7 |
6
|
a1i |
|- ( ph -> ( F ( C Func D ) G -> ( F ( C Func D ) G \/ F ( C Func E ) G ) ) ) |
8 |
|
olc |
|- ( F ( C Func E ) G -> ( F ( C Func D ) G \/ F ( C Func E ) G ) ) |
9 |
8
|
a1i |
|- ( ph -> ( F ( C Func E ) G -> ( F ( C Func D ) G \/ F ( C Func E ) G ) ) ) |
10 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
11 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
12 |
|
eqid |
|- ( Homf ` D ) = ( Homf ` D ) |
13 |
|
inss2 |
|- ( S i^i ( Base ` D ) ) C_ ( Base ` D ) |
14 |
13
|
a1i |
|- ( ph -> ( S i^i ( Base ` D ) ) C_ ( Base ` D ) ) |
15 |
11 12 3 14
|
fullsubc |
|- ( ph -> ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) e. ( Subcat ` D ) ) |
16 |
15
|
adantr |
|- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) e. ( Subcat ` D ) ) |
17 |
12 11
|
homffn |
|- ( Homf ` D ) Fn ( ( Base ` D ) X. ( Base ` D ) ) |
18 |
|
xpss12 |
|- ( ( ( S i^i ( Base ` D ) ) C_ ( Base ` D ) /\ ( S i^i ( Base ` D ) ) C_ ( Base ` D ) ) -> ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) C_ ( ( Base ` D ) X. ( Base ` D ) ) ) |
19 |
13 13 18
|
mp2an |
|- ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) C_ ( ( Base ` D ) X. ( Base ` D ) ) |
20 |
|
fnssres |
|- ( ( ( Homf ` D ) Fn ( ( Base ` D ) X. ( Base ` D ) ) /\ ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) C_ ( ( Base ` D ) X. ( Base ` D ) ) ) -> ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) Fn ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) |
21 |
17 19 20
|
mp2an |
|- ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) Fn ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) |
22 |
21
|
a1i |
|- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) Fn ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) |
23 |
5
|
adantr |
|- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> F : A --> S ) |
24 |
23
|
ffnd |
|- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> F Fn A ) |
25 |
23
|
frnd |
|- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ran F C_ S ) |
26 |
|
simpr |
|- ( ( ph /\ F ( C Func D ) G ) -> F ( C Func D ) G ) |
27 |
1 11 26
|
funcf1 |
|- ( ( ph /\ F ( C Func D ) G ) -> F : A --> ( Base ` D ) ) |
28 |
27
|
frnd |
|- ( ( ph /\ F ( C Func D ) G ) -> ran F C_ ( Base ` D ) ) |
29 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
30 |
|
simpr |
|- ( ( ph /\ F ( C Func E ) G ) -> F ( C Func E ) G ) |
31 |
1 29 30
|
funcf1 |
|- ( ( ph /\ F ( C Func E ) G ) -> F : A --> ( Base ` E ) ) |
32 |
31
|
frnd |
|- ( ( ph /\ F ( C Func E ) G ) -> ran F C_ ( Base ` E ) ) |
33 |
2 11
|
ressbasss |
|- ( Base ` E ) C_ ( Base ` D ) |
34 |
32 33
|
sstrdi |
|- ( ( ph /\ F ( C Func E ) G ) -> ran F C_ ( Base ` D ) ) |
35 |
28 34
|
jaodan |
|- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ran F C_ ( Base ` D ) ) |
36 |
25 35
|
ssind |
|- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ran F C_ ( S i^i ( Base ` D ) ) ) |
37 |
|
df-f |
|- ( F : A --> ( S i^i ( Base ` D ) ) <-> ( F Fn A /\ ran F C_ ( S i^i ( Base ` D ) ) ) ) |
38 |
24 36 37
|
sylanbrc |
|- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> F : A --> ( S i^i ( Base ` D ) ) ) |
39 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
40 |
|
simpr |
|- ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ F ( C Func D ) G ) -> F ( C Func D ) G ) |
41 |
|
simplrl |
|- ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ F ( C Func D ) G ) -> x e. A ) |
42 |
|
simplrr |
|- ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ F ( C Func D ) G ) -> y e. A ) |
43 |
1 10 39 40 41 42
|
funcf2 |
|- ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ F ( C Func D ) G ) -> ( x G y ) : ( x ( Hom ` C ) y ) --> ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) ) |
44 |
|
eqid |
|- ( Hom ` E ) = ( Hom ` E ) |
45 |
|
simpr |
|- ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ F ( C Func E ) G ) -> F ( C Func E ) G ) |
46 |
|
simplrl |
|- ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ F ( C Func E ) G ) -> x e. A ) |
47 |
|
simplrr |
|- ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ F ( C Func E ) G ) -> y e. A ) |
48 |
1 10 44 45 46 47
|
funcf2 |
|- ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ F ( C Func E ) G ) -> ( x G y ) : ( x ( Hom ` C ) y ) --> ( ( F ` x ) ( Hom ` E ) ( F ` y ) ) ) |
49 |
2 39
|
resshom |
|- ( S e. V -> ( Hom ` D ) = ( Hom ` E ) ) |
50 |
4 49
|
syl |
|- ( ph -> ( Hom ` D ) = ( Hom ` E ) ) |
51 |
50
|
ad2antrr |
|- ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ F ( C Func E ) G ) -> ( Hom ` D ) = ( Hom ` E ) ) |
52 |
51
|
oveqd |
|- ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ F ( C Func E ) G ) -> ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) = ( ( F ` x ) ( Hom ` E ) ( F ` y ) ) ) |
53 |
52
|
feq3d |
|- ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ F ( C Func E ) G ) -> ( ( x G y ) : ( x ( Hom ` C ) y ) --> ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) <-> ( x G y ) : ( x ( Hom ` C ) y ) --> ( ( F ` x ) ( Hom ` E ) ( F ` y ) ) ) ) |
54 |
48 53
|
mpbird |
|- ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ F ( C Func E ) G ) -> ( x G y ) : ( x ( Hom ` C ) y ) --> ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) ) |
55 |
43 54
|
jaodan |
|- ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ( x G y ) : ( x ( Hom ` C ) y ) --> ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) ) |
56 |
55
|
an32s |
|- ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> ( x G y ) : ( x ( Hom ` C ) y ) --> ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) ) |
57 |
38
|
adantr |
|- ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> F : A --> ( S i^i ( Base ` D ) ) ) |
58 |
|
simprl |
|- ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> x e. A ) |
59 |
57 58
|
ffvelrnd |
|- ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> ( F ` x ) e. ( S i^i ( Base ` D ) ) ) |
60 |
|
simprr |
|- ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> y e. A ) |
61 |
57 60
|
ffvelrnd |
|- ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> ( F ` y ) e. ( S i^i ( Base ` D ) ) ) |
62 |
59 61
|
ovresd |
|- ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> ( ( F ` x ) ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ( F ` y ) ) = ( ( F ` x ) ( Homf ` D ) ( F ` y ) ) ) |
63 |
59
|
elin2d |
|- ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> ( F ` x ) e. ( Base ` D ) ) |
64 |
61
|
elin2d |
|- ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> ( F ` y ) e. ( Base ` D ) ) |
65 |
12 11 39 63 64
|
homfval |
|- ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> ( ( F ` x ) ( Homf ` D ) ( F ` y ) ) = ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) ) |
66 |
62 65
|
eqtrd |
|- ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> ( ( F ` x ) ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ( F ` y ) ) = ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) ) |
67 |
66
|
feq3d |
|- ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> ( ( x G y ) : ( x ( Hom ` C ) y ) --> ( ( F ` x ) ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ( F ` y ) ) <-> ( x G y ) : ( x ( Hom ` C ) y ) --> ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) ) ) |
68 |
56 67
|
mpbird |
|- ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> ( x G y ) : ( x ( Hom ` C ) y ) --> ( ( F ` x ) ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ( F ` y ) ) ) |
69 |
1 10 16 22 38 68
|
funcres2b |
|- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ( F ( C Func D ) G <-> F ( C Func ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) ) G ) ) |
70 |
|
eqidd |
|- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ( Homf ` C ) = ( Homf ` C ) ) |
71 |
|
eqidd |
|- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ( comf ` C ) = ( comf ` C ) ) |
72 |
11
|
ressinbas |
|- ( S e. V -> ( D |`s S ) = ( D |`s ( S i^i ( Base ` D ) ) ) ) |
73 |
4 72
|
syl |
|- ( ph -> ( D |`s S ) = ( D |`s ( S i^i ( Base ` D ) ) ) ) |
74 |
2 73
|
eqtrid |
|- ( ph -> E = ( D |`s ( S i^i ( Base ` D ) ) ) ) |
75 |
74
|
fveq2d |
|- ( ph -> ( Homf ` E ) = ( Homf ` ( D |`s ( S i^i ( Base ` D ) ) ) ) ) |
76 |
|
eqid |
|- ( D |`s ( S i^i ( Base ` D ) ) ) = ( D |`s ( S i^i ( Base ` D ) ) ) |
77 |
|
eqid |
|- ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) = ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) |
78 |
11 12 3 14 76 77
|
fullresc |
|- ( ph -> ( ( Homf ` ( D |`s ( S i^i ( Base ` D ) ) ) ) = ( Homf ` ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) ) /\ ( comf ` ( D |`s ( S i^i ( Base ` D ) ) ) ) = ( comf ` ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) ) ) ) |
79 |
78
|
simpld |
|- ( ph -> ( Homf ` ( D |`s ( S i^i ( Base ` D ) ) ) ) = ( Homf ` ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) ) ) |
80 |
75 79
|
eqtrd |
|- ( ph -> ( Homf ` E ) = ( Homf ` ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) ) ) |
81 |
80
|
adantr |
|- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ( Homf ` E ) = ( Homf ` ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) ) ) |
82 |
74
|
fveq2d |
|- ( ph -> ( comf ` E ) = ( comf ` ( D |`s ( S i^i ( Base ` D ) ) ) ) ) |
83 |
78
|
simprd |
|- ( ph -> ( comf ` ( D |`s ( S i^i ( Base ` D ) ) ) ) = ( comf ` ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) ) ) |
84 |
82 83
|
eqtrd |
|- ( ph -> ( comf ` E ) = ( comf ` ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) ) ) |
85 |
84
|
adantr |
|- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ( comf ` E ) = ( comf ` ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) ) ) |
86 |
|
df-br |
|- ( F ( C Func D ) G <-> <. F , G >. e. ( C Func D ) ) |
87 |
|
funcrcl |
|- ( <. F , G >. e. ( C Func D ) -> ( C e. Cat /\ D e. Cat ) ) |
88 |
86 87
|
sylbi |
|- ( F ( C Func D ) G -> ( C e. Cat /\ D e. Cat ) ) |
89 |
88
|
simpld |
|- ( F ( C Func D ) G -> C e. Cat ) |
90 |
|
df-br |
|- ( F ( C Func E ) G <-> <. F , G >. e. ( C Func E ) ) |
91 |
|
funcrcl |
|- ( <. F , G >. e. ( C Func E ) -> ( C e. Cat /\ E e. Cat ) ) |
92 |
90 91
|
sylbi |
|- ( F ( C Func E ) G -> ( C e. Cat /\ E e. Cat ) ) |
93 |
92
|
simpld |
|- ( F ( C Func E ) G -> C e. Cat ) |
94 |
89 93
|
jaoi |
|- ( ( F ( C Func D ) G \/ F ( C Func E ) G ) -> C e. Cat ) |
95 |
94
|
elexd |
|- ( ( F ( C Func D ) G \/ F ( C Func E ) G ) -> C e. _V ) |
96 |
95
|
adantl |
|- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> C e. _V ) |
97 |
2
|
ovexi |
|- E e. _V |
98 |
97
|
a1i |
|- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> E e. _V ) |
99 |
|
ovexd |
|- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) e. _V ) |
100 |
70 71 81 85 96 96 98 99
|
funcpropd |
|- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ( C Func E ) = ( C Func ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) ) ) |
101 |
100
|
breqd |
|- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ( F ( C Func E ) G <-> F ( C Func ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) ) G ) ) |
102 |
69 101
|
bitr4d |
|- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ( F ( C Func D ) G <-> F ( C Func E ) G ) ) |
103 |
102
|
ex |
|- ( ph -> ( ( F ( C Func D ) G \/ F ( C Func E ) G ) -> ( F ( C Func D ) G <-> F ( C Func E ) G ) ) ) |
104 |
7 9 103
|
pm5.21ndd |
|- ( ph -> ( F ( C Func D ) G <-> F ( C Func E ) G ) ) |