Metamath Proof Explorer


Theorem funcres2c

Description: Condition for a functor to also be a functor into the restriction. (Contributed by Mario Carneiro, 30-Jan-2017)

Ref Expression
Hypotheses funcres2c.a
|- A = ( Base ` C )
funcres2c.e
|- E = ( D |`s S )
funcres2c.d
|- ( ph -> D e. Cat )
funcres2c.r
|- ( ph -> S e. V )
funcres2c.1
|- ( ph -> F : A --> S )
Assertion funcres2c
|- ( ph -> ( F ( C Func D ) G <-> F ( C Func E ) G ) )

Proof

Step Hyp Ref Expression
1 funcres2c.a
 |-  A = ( Base ` C )
2 funcres2c.e
 |-  E = ( D |`s S )
3 funcres2c.d
 |-  ( ph -> D e. Cat )
4 funcres2c.r
 |-  ( ph -> S e. V )
5 funcres2c.1
 |-  ( ph -> F : A --> S )
6 orc
 |-  ( F ( C Func D ) G -> ( F ( C Func D ) G \/ F ( C Func E ) G ) )
7 6 a1i
 |-  ( ph -> ( F ( C Func D ) G -> ( F ( C Func D ) G \/ F ( C Func E ) G ) ) )
8 olc
 |-  ( F ( C Func E ) G -> ( F ( C Func D ) G \/ F ( C Func E ) G ) )
9 8 a1i
 |-  ( ph -> ( F ( C Func E ) G -> ( F ( C Func D ) G \/ F ( C Func E ) G ) ) )
10 eqid
 |-  ( Hom ` C ) = ( Hom ` C )
11 eqid
 |-  ( Base ` D ) = ( Base ` D )
12 eqid
 |-  ( Homf ` D ) = ( Homf ` D )
13 inss2
 |-  ( S i^i ( Base ` D ) ) C_ ( Base ` D )
14 13 a1i
 |-  ( ph -> ( S i^i ( Base ` D ) ) C_ ( Base ` D ) )
15 11 12 3 14 fullsubc
 |-  ( ph -> ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) e. ( Subcat ` D ) )
16 15 adantr
 |-  ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) e. ( Subcat ` D ) )
17 12 11 homffn
 |-  ( Homf ` D ) Fn ( ( Base ` D ) X. ( Base ` D ) )
18 xpss12
 |-  ( ( ( S i^i ( Base ` D ) ) C_ ( Base ` D ) /\ ( S i^i ( Base ` D ) ) C_ ( Base ` D ) ) -> ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) C_ ( ( Base ` D ) X. ( Base ` D ) ) )
19 13 13 18 mp2an
 |-  ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) C_ ( ( Base ` D ) X. ( Base ` D ) )
20 fnssres
 |-  ( ( ( Homf ` D ) Fn ( ( Base ` D ) X. ( Base ` D ) ) /\ ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) C_ ( ( Base ` D ) X. ( Base ` D ) ) ) -> ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) Fn ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) )
21 17 19 20 mp2an
 |-  ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) Fn ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) )
22 21 a1i
 |-  ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) Fn ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) )
23 5 adantr
 |-  ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> F : A --> S )
24 23 ffnd
 |-  ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> F Fn A )
25 23 frnd
 |-  ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ran F C_ S )
26 simpr
 |-  ( ( ph /\ F ( C Func D ) G ) -> F ( C Func D ) G )
27 1 11 26 funcf1
 |-  ( ( ph /\ F ( C Func D ) G ) -> F : A --> ( Base ` D ) )
28 27 frnd
 |-  ( ( ph /\ F ( C Func D ) G ) -> ran F C_ ( Base ` D ) )
29 eqid
 |-  ( Base ` E ) = ( Base ` E )
30 simpr
 |-  ( ( ph /\ F ( C Func E ) G ) -> F ( C Func E ) G )
31 1 29 30 funcf1
 |-  ( ( ph /\ F ( C Func E ) G ) -> F : A --> ( Base ` E ) )
32 31 frnd
 |-  ( ( ph /\ F ( C Func E ) G ) -> ran F C_ ( Base ` E ) )
33 2 11 ressbasss
 |-  ( Base ` E ) C_ ( Base ` D )
34 32 33 sstrdi
 |-  ( ( ph /\ F ( C Func E ) G ) -> ran F C_ ( Base ` D ) )
35 28 34 jaodan
 |-  ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ran F C_ ( Base ` D ) )
36 25 35 ssind
 |-  ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ran F C_ ( S i^i ( Base ` D ) ) )
37 df-f
 |-  ( F : A --> ( S i^i ( Base ` D ) ) <-> ( F Fn A /\ ran F C_ ( S i^i ( Base ` D ) ) ) )
38 24 36 37 sylanbrc
 |-  ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> F : A --> ( S i^i ( Base ` D ) ) )
39 eqid
 |-  ( Hom ` D ) = ( Hom ` D )
40 simpr
 |-  ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ F ( C Func D ) G ) -> F ( C Func D ) G )
41 simplrl
 |-  ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ F ( C Func D ) G ) -> x e. A )
42 simplrr
 |-  ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ F ( C Func D ) G ) -> y e. A )
43 1 10 39 40 41 42 funcf2
 |-  ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ F ( C Func D ) G ) -> ( x G y ) : ( x ( Hom ` C ) y ) --> ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) )
44 eqid
 |-  ( Hom ` E ) = ( Hom ` E )
45 simpr
 |-  ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ F ( C Func E ) G ) -> F ( C Func E ) G )
46 simplrl
 |-  ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ F ( C Func E ) G ) -> x e. A )
47 simplrr
 |-  ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ F ( C Func E ) G ) -> y e. A )
48 1 10 44 45 46 47 funcf2
 |-  ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ F ( C Func E ) G ) -> ( x G y ) : ( x ( Hom ` C ) y ) --> ( ( F ` x ) ( Hom ` E ) ( F ` y ) ) )
49 2 39 resshom
 |-  ( S e. V -> ( Hom ` D ) = ( Hom ` E ) )
50 4 49 syl
 |-  ( ph -> ( Hom ` D ) = ( Hom ` E ) )
51 50 ad2antrr
 |-  ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ F ( C Func E ) G ) -> ( Hom ` D ) = ( Hom ` E ) )
52 51 oveqd
 |-  ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ F ( C Func E ) G ) -> ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) = ( ( F ` x ) ( Hom ` E ) ( F ` y ) ) )
53 52 feq3d
 |-  ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ F ( C Func E ) G ) -> ( ( x G y ) : ( x ( Hom ` C ) y ) --> ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) <-> ( x G y ) : ( x ( Hom ` C ) y ) --> ( ( F ` x ) ( Hom ` E ) ( F ` y ) ) ) )
54 48 53 mpbird
 |-  ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ F ( C Func E ) G ) -> ( x G y ) : ( x ( Hom ` C ) y ) --> ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) )
55 43 54 jaodan
 |-  ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ( x G y ) : ( x ( Hom ` C ) y ) --> ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) )
56 55 an32s
 |-  ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> ( x G y ) : ( x ( Hom ` C ) y ) --> ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) )
57 38 adantr
 |-  ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> F : A --> ( S i^i ( Base ` D ) ) )
58 simprl
 |-  ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> x e. A )
59 57 58 ffvelrnd
 |-  ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> ( F ` x ) e. ( S i^i ( Base ` D ) ) )
60 simprr
 |-  ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> y e. A )
61 57 60 ffvelrnd
 |-  ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> ( F ` y ) e. ( S i^i ( Base ` D ) ) )
62 59 61 ovresd
 |-  ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> ( ( F ` x ) ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ( F ` y ) ) = ( ( F ` x ) ( Homf ` D ) ( F ` y ) ) )
63 59 elin2d
 |-  ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> ( F ` x ) e. ( Base ` D ) )
64 61 elin2d
 |-  ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> ( F ` y ) e. ( Base ` D ) )
65 12 11 39 63 64 homfval
 |-  ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> ( ( F ` x ) ( Homf ` D ) ( F ` y ) ) = ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) )
66 62 65 eqtrd
 |-  ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> ( ( F ` x ) ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ( F ` y ) ) = ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) )
67 66 feq3d
 |-  ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> ( ( x G y ) : ( x ( Hom ` C ) y ) --> ( ( F ` x ) ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ( F ` y ) ) <-> ( x G y ) : ( x ( Hom ` C ) y ) --> ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) ) )
68 56 67 mpbird
 |-  ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> ( x G y ) : ( x ( Hom ` C ) y ) --> ( ( F ` x ) ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ( F ` y ) ) )
69 1 10 16 22 38 68 funcres2b
 |-  ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ( F ( C Func D ) G <-> F ( C Func ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) ) G ) )
70 eqidd
 |-  ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ( Homf ` C ) = ( Homf ` C ) )
71 eqidd
 |-  ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ( comf ` C ) = ( comf ` C ) )
72 11 ressinbas
 |-  ( S e. V -> ( D |`s S ) = ( D |`s ( S i^i ( Base ` D ) ) ) )
73 4 72 syl
 |-  ( ph -> ( D |`s S ) = ( D |`s ( S i^i ( Base ` D ) ) ) )
74 2 73 eqtrid
 |-  ( ph -> E = ( D |`s ( S i^i ( Base ` D ) ) ) )
75 74 fveq2d
 |-  ( ph -> ( Homf ` E ) = ( Homf ` ( D |`s ( S i^i ( Base ` D ) ) ) ) )
76 eqid
 |-  ( D |`s ( S i^i ( Base ` D ) ) ) = ( D |`s ( S i^i ( Base ` D ) ) )
77 eqid
 |-  ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) = ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) )
78 11 12 3 14 76 77 fullresc
 |-  ( ph -> ( ( Homf ` ( D |`s ( S i^i ( Base ` D ) ) ) ) = ( Homf ` ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) ) /\ ( comf ` ( D |`s ( S i^i ( Base ` D ) ) ) ) = ( comf ` ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) ) ) )
79 78 simpld
 |-  ( ph -> ( Homf ` ( D |`s ( S i^i ( Base ` D ) ) ) ) = ( Homf ` ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) ) )
80 75 79 eqtrd
 |-  ( ph -> ( Homf ` E ) = ( Homf ` ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) ) )
81 80 adantr
 |-  ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ( Homf ` E ) = ( Homf ` ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) ) )
82 74 fveq2d
 |-  ( ph -> ( comf ` E ) = ( comf ` ( D |`s ( S i^i ( Base ` D ) ) ) ) )
83 78 simprd
 |-  ( ph -> ( comf ` ( D |`s ( S i^i ( Base ` D ) ) ) ) = ( comf ` ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) ) )
84 82 83 eqtrd
 |-  ( ph -> ( comf ` E ) = ( comf ` ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) ) )
85 84 adantr
 |-  ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ( comf ` E ) = ( comf ` ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) ) )
86 df-br
 |-  ( F ( C Func D ) G <-> <. F , G >. e. ( C Func D ) )
87 funcrcl
 |-  ( <. F , G >. e. ( C Func D ) -> ( C e. Cat /\ D e. Cat ) )
88 86 87 sylbi
 |-  ( F ( C Func D ) G -> ( C e. Cat /\ D e. Cat ) )
89 88 simpld
 |-  ( F ( C Func D ) G -> C e. Cat )
90 df-br
 |-  ( F ( C Func E ) G <-> <. F , G >. e. ( C Func E ) )
91 funcrcl
 |-  ( <. F , G >. e. ( C Func E ) -> ( C e. Cat /\ E e. Cat ) )
92 90 91 sylbi
 |-  ( F ( C Func E ) G -> ( C e. Cat /\ E e. Cat ) )
93 92 simpld
 |-  ( F ( C Func E ) G -> C e. Cat )
94 89 93 jaoi
 |-  ( ( F ( C Func D ) G \/ F ( C Func E ) G ) -> C e. Cat )
95 94 elexd
 |-  ( ( F ( C Func D ) G \/ F ( C Func E ) G ) -> C e. _V )
96 95 adantl
 |-  ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> C e. _V )
97 2 ovexi
 |-  E e. _V
98 97 a1i
 |-  ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> E e. _V )
99 ovexd
 |-  ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) e. _V )
100 70 71 81 85 96 96 98 99 funcpropd
 |-  ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ( C Func E ) = ( C Func ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) ) )
101 100 breqd
 |-  ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ( F ( C Func E ) G <-> F ( C Func ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) ) G ) )
102 69 101 bitr4d
 |-  ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ( F ( C Func D ) G <-> F ( C Func E ) G ) )
103 102 ex
 |-  ( ph -> ( ( F ( C Func D ) G \/ F ( C Func E ) G ) -> ( F ( C Func D ) G <-> F ( C Func E ) G ) ) )
104 7 9 103 pm5.21ndd
 |-  ( ph -> ( F ( C Func D ) G <-> F ( C Func E ) G ) )