| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funcres2c.a |
|- A = ( Base ` C ) |
| 2 |
|
funcres2c.e |
|- E = ( D |`s S ) |
| 3 |
|
funcres2c.d |
|- ( ph -> D e. Cat ) |
| 4 |
|
funcres2c.r |
|- ( ph -> S e. V ) |
| 5 |
|
funcres2c.1 |
|- ( ph -> F : A --> S ) |
| 6 |
|
orc |
|- ( F ( C Func D ) G -> ( F ( C Func D ) G \/ F ( C Func E ) G ) ) |
| 7 |
6
|
a1i |
|- ( ph -> ( F ( C Func D ) G -> ( F ( C Func D ) G \/ F ( C Func E ) G ) ) ) |
| 8 |
|
olc |
|- ( F ( C Func E ) G -> ( F ( C Func D ) G \/ F ( C Func E ) G ) ) |
| 9 |
8
|
a1i |
|- ( ph -> ( F ( C Func E ) G -> ( F ( C Func D ) G \/ F ( C Func E ) G ) ) ) |
| 10 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 11 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 12 |
|
eqid |
|- ( Homf ` D ) = ( Homf ` D ) |
| 13 |
|
inss2 |
|- ( S i^i ( Base ` D ) ) C_ ( Base ` D ) |
| 14 |
13
|
a1i |
|- ( ph -> ( S i^i ( Base ` D ) ) C_ ( Base ` D ) ) |
| 15 |
11 12 3 14
|
fullsubc |
|- ( ph -> ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) e. ( Subcat ` D ) ) |
| 16 |
15
|
adantr |
|- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) e. ( Subcat ` D ) ) |
| 17 |
12 11
|
homffn |
|- ( Homf ` D ) Fn ( ( Base ` D ) X. ( Base ` D ) ) |
| 18 |
|
xpss12 |
|- ( ( ( S i^i ( Base ` D ) ) C_ ( Base ` D ) /\ ( S i^i ( Base ` D ) ) C_ ( Base ` D ) ) -> ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) C_ ( ( Base ` D ) X. ( Base ` D ) ) ) |
| 19 |
13 13 18
|
mp2an |
|- ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) C_ ( ( Base ` D ) X. ( Base ` D ) ) |
| 20 |
|
fnssres |
|- ( ( ( Homf ` D ) Fn ( ( Base ` D ) X. ( Base ` D ) ) /\ ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) C_ ( ( Base ` D ) X. ( Base ` D ) ) ) -> ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) Fn ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) |
| 21 |
17 19 20
|
mp2an |
|- ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) Fn ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) |
| 22 |
21
|
a1i |
|- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) Fn ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) |
| 23 |
5
|
adantr |
|- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> F : A --> S ) |
| 24 |
23
|
ffnd |
|- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> F Fn A ) |
| 25 |
23
|
frnd |
|- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ran F C_ S ) |
| 26 |
|
simpr |
|- ( ( ph /\ F ( C Func D ) G ) -> F ( C Func D ) G ) |
| 27 |
1 11 26
|
funcf1 |
|- ( ( ph /\ F ( C Func D ) G ) -> F : A --> ( Base ` D ) ) |
| 28 |
27
|
frnd |
|- ( ( ph /\ F ( C Func D ) G ) -> ran F C_ ( Base ` D ) ) |
| 29 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
| 30 |
|
simpr |
|- ( ( ph /\ F ( C Func E ) G ) -> F ( C Func E ) G ) |
| 31 |
1 29 30
|
funcf1 |
|- ( ( ph /\ F ( C Func E ) G ) -> F : A --> ( Base ` E ) ) |
| 32 |
31
|
frnd |
|- ( ( ph /\ F ( C Func E ) G ) -> ran F C_ ( Base ` E ) ) |
| 33 |
2 11
|
ressbasss |
|- ( Base ` E ) C_ ( Base ` D ) |
| 34 |
32 33
|
sstrdi |
|- ( ( ph /\ F ( C Func E ) G ) -> ran F C_ ( Base ` D ) ) |
| 35 |
28 34
|
jaodan |
|- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ran F C_ ( Base ` D ) ) |
| 36 |
25 35
|
ssind |
|- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ran F C_ ( S i^i ( Base ` D ) ) ) |
| 37 |
|
df-f |
|- ( F : A --> ( S i^i ( Base ` D ) ) <-> ( F Fn A /\ ran F C_ ( S i^i ( Base ` D ) ) ) ) |
| 38 |
24 36 37
|
sylanbrc |
|- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> F : A --> ( S i^i ( Base ` D ) ) ) |
| 39 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
| 40 |
|
simpr |
|- ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ F ( C Func D ) G ) -> F ( C Func D ) G ) |
| 41 |
|
simplrl |
|- ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ F ( C Func D ) G ) -> x e. A ) |
| 42 |
|
simplrr |
|- ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ F ( C Func D ) G ) -> y e. A ) |
| 43 |
1 10 39 40 41 42
|
funcf2 |
|- ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ F ( C Func D ) G ) -> ( x G y ) : ( x ( Hom ` C ) y ) --> ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) ) |
| 44 |
|
eqid |
|- ( Hom ` E ) = ( Hom ` E ) |
| 45 |
|
simpr |
|- ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ F ( C Func E ) G ) -> F ( C Func E ) G ) |
| 46 |
|
simplrl |
|- ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ F ( C Func E ) G ) -> x e. A ) |
| 47 |
|
simplrr |
|- ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ F ( C Func E ) G ) -> y e. A ) |
| 48 |
1 10 44 45 46 47
|
funcf2 |
|- ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ F ( C Func E ) G ) -> ( x G y ) : ( x ( Hom ` C ) y ) --> ( ( F ` x ) ( Hom ` E ) ( F ` y ) ) ) |
| 49 |
2 39
|
resshom |
|- ( S e. V -> ( Hom ` D ) = ( Hom ` E ) ) |
| 50 |
4 49
|
syl |
|- ( ph -> ( Hom ` D ) = ( Hom ` E ) ) |
| 51 |
50
|
ad2antrr |
|- ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ F ( C Func E ) G ) -> ( Hom ` D ) = ( Hom ` E ) ) |
| 52 |
51
|
oveqd |
|- ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ F ( C Func E ) G ) -> ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) = ( ( F ` x ) ( Hom ` E ) ( F ` y ) ) ) |
| 53 |
52
|
feq3d |
|- ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ F ( C Func E ) G ) -> ( ( x G y ) : ( x ( Hom ` C ) y ) --> ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) <-> ( x G y ) : ( x ( Hom ` C ) y ) --> ( ( F ` x ) ( Hom ` E ) ( F ` y ) ) ) ) |
| 54 |
48 53
|
mpbird |
|- ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ F ( C Func E ) G ) -> ( x G y ) : ( x ( Hom ` C ) y ) --> ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) ) |
| 55 |
43 54
|
jaodan |
|- ( ( ( ph /\ ( x e. A /\ y e. A ) ) /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ( x G y ) : ( x ( Hom ` C ) y ) --> ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) ) |
| 56 |
55
|
an32s |
|- ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> ( x G y ) : ( x ( Hom ` C ) y ) --> ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) ) |
| 57 |
38
|
adantr |
|- ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> F : A --> ( S i^i ( Base ` D ) ) ) |
| 58 |
|
simprl |
|- ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> x e. A ) |
| 59 |
57 58
|
ffvelcdmd |
|- ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> ( F ` x ) e. ( S i^i ( Base ` D ) ) ) |
| 60 |
|
simprr |
|- ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> y e. A ) |
| 61 |
57 60
|
ffvelcdmd |
|- ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> ( F ` y ) e. ( S i^i ( Base ` D ) ) ) |
| 62 |
59 61
|
ovresd |
|- ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> ( ( F ` x ) ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ( F ` y ) ) = ( ( F ` x ) ( Homf ` D ) ( F ` y ) ) ) |
| 63 |
59
|
elin2d |
|- ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> ( F ` x ) e. ( Base ` D ) ) |
| 64 |
61
|
elin2d |
|- ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> ( F ` y ) e. ( Base ` D ) ) |
| 65 |
12 11 39 63 64
|
homfval |
|- ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> ( ( F ` x ) ( Homf ` D ) ( F ` y ) ) = ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) ) |
| 66 |
62 65
|
eqtrd |
|- ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> ( ( F ` x ) ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ( F ` y ) ) = ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) ) |
| 67 |
66
|
feq3d |
|- ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> ( ( x G y ) : ( x ( Hom ` C ) y ) --> ( ( F ` x ) ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ( F ` y ) ) <-> ( x G y ) : ( x ( Hom ` C ) y ) --> ( ( F ` x ) ( Hom ` D ) ( F ` y ) ) ) ) |
| 68 |
56 67
|
mpbird |
|- ( ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) /\ ( x e. A /\ y e. A ) ) -> ( x G y ) : ( x ( Hom ` C ) y ) --> ( ( F ` x ) ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ( F ` y ) ) ) |
| 69 |
1 10 16 22 38 68
|
funcres2b |
|- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ( F ( C Func D ) G <-> F ( C Func ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) ) G ) ) |
| 70 |
|
eqidd |
|- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ( Homf ` C ) = ( Homf ` C ) ) |
| 71 |
|
eqidd |
|- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ( comf ` C ) = ( comf ` C ) ) |
| 72 |
11
|
ressinbas |
|- ( S e. V -> ( D |`s S ) = ( D |`s ( S i^i ( Base ` D ) ) ) ) |
| 73 |
4 72
|
syl |
|- ( ph -> ( D |`s S ) = ( D |`s ( S i^i ( Base ` D ) ) ) ) |
| 74 |
2 73
|
eqtrid |
|- ( ph -> E = ( D |`s ( S i^i ( Base ` D ) ) ) ) |
| 75 |
74
|
fveq2d |
|- ( ph -> ( Homf ` E ) = ( Homf ` ( D |`s ( S i^i ( Base ` D ) ) ) ) ) |
| 76 |
|
eqid |
|- ( D |`s ( S i^i ( Base ` D ) ) ) = ( D |`s ( S i^i ( Base ` D ) ) ) |
| 77 |
|
eqid |
|- ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) = ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) |
| 78 |
11 12 3 14 76 77
|
fullresc |
|- ( ph -> ( ( Homf ` ( D |`s ( S i^i ( Base ` D ) ) ) ) = ( Homf ` ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) ) /\ ( comf ` ( D |`s ( S i^i ( Base ` D ) ) ) ) = ( comf ` ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) ) ) ) |
| 79 |
78
|
simpld |
|- ( ph -> ( Homf ` ( D |`s ( S i^i ( Base ` D ) ) ) ) = ( Homf ` ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) ) ) |
| 80 |
75 79
|
eqtrd |
|- ( ph -> ( Homf ` E ) = ( Homf ` ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) ) ) |
| 81 |
80
|
adantr |
|- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ( Homf ` E ) = ( Homf ` ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) ) ) |
| 82 |
74
|
fveq2d |
|- ( ph -> ( comf ` E ) = ( comf ` ( D |`s ( S i^i ( Base ` D ) ) ) ) ) |
| 83 |
78
|
simprd |
|- ( ph -> ( comf ` ( D |`s ( S i^i ( Base ` D ) ) ) ) = ( comf ` ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) ) ) |
| 84 |
82 83
|
eqtrd |
|- ( ph -> ( comf ` E ) = ( comf ` ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) ) ) |
| 85 |
84
|
adantr |
|- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ( comf ` E ) = ( comf ` ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) ) ) |
| 86 |
|
df-br |
|- ( F ( C Func D ) G <-> <. F , G >. e. ( C Func D ) ) |
| 87 |
|
funcrcl |
|- ( <. F , G >. e. ( C Func D ) -> ( C e. Cat /\ D e. Cat ) ) |
| 88 |
86 87
|
sylbi |
|- ( F ( C Func D ) G -> ( C e. Cat /\ D e. Cat ) ) |
| 89 |
88
|
simpld |
|- ( F ( C Func D ) G -> C e. Cat ) |
| 90 |
|
df-br |
|- ( F ( C Func E ) G <-> <. F , G >. e. ( C Func E ) ) |
| 91 |
|
funcrcl |
|- ( <. F , G >. e. ( C Func E ) -> ( C e. Cat /\ E e. Cat ) ) |
| 92 |
90 91
|
sylbi |
|- ( F ( C Func E ) G -> ( C e. Cat /\ E e. Cat ) ) |
| 93 |
92
|
simpld |
|- ( F ( C Func E ) G -> C e. Cat ) |
| 94 |
89 93
|
jaoi |
|- ( ( F ( C Func D ) G \/ F ( C Func E ) G ) -> C e. Cat ) |
| 95 |
94
|
elexd |
|- ( ( F ( C Func D ) G \/ F ( C Func E ) G ) -> C e. _V ) |
| 96 |
95
|
adantl |
|- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> C e. _V ) |
| 97 |
2
|
ovexi |
|- E e. _V |
| 98 |
97
|
a1i |
|- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> E e. _V ) |
| 99 |
|
ovexd |
|- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) e. _V ) |
| 100 |
70 71 81 85 96 96 98 99
|
funcpropd |
|- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ( C Func E ) = ( C Func ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) ) ) |
| 101 |
100
|
breqd |
|- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ( F ( C Func E ) G <-> F ( C Func ( D |`cat ( ( Homf ` D ) |` ( ( S i^i ( Base ` D ) ) X. ( S i^i ( Base ` D ) ) ) ) ) ) G ) ) |
| 102 |
69 101
|
bitr4d |
|- ( ( ph /\ ( F ( C Func D ) G \/ F ( C Func E ) G ) ) -> ( F ( C Func D ) G <-> F ( C Func E ) G ) ) |
| 103 |
102
|
ex |
|- ( ph -> ( ( F ( C Func D ) G \/ F ( C Func E ) G ) -> ( F ( C Func D ) G <-> F ( C Func E ) G ) ) ) |
| 104 |
7 9 103
|
pm5.21ndd |
|- ( ph -> ( F ( C Func D ) G <-> F ( C Func E ) G ) ) |