| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							funcrngcsetcALT.r | 
							 |-  R = ( RngCat ` U )  | 
						
						
							| 2 | 
							
								
							 | 
							funcrngcsetcALT.s | 
							 |-  S = ( SetCat ` U )  | 
						
						
							| 3 | 
							
								
							 | 
							funcrngcsetcALT.b | 
							 |-  B = ( Base ` R )  | 
						
						
							| 4 | 
							
								
							 | 
							funcrngcsetcALT.u | 
							 |-  ( ph -> U e. WUni )  | 
						
						
							| 5 | 
							
								
							 | 
							funcrngcsetcALT.f | 
							 |-  ( ph -> F = ( x e. B |-> ( Base ` x ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							funcrngcsetcALT.g | 
							 |-  ( ph -> G = ( x e. B , y e. B |-> ( _I |` ( x RngHom y ) ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							fveq2 | 
							 |-  ( x = u -> ( Base ` x ) = ( Base ` u ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							cbvmptv | 
							 |-  ( x e. B |-> ( Base ` x ) ) = ( u e. B |-> ( Base ` u ) )  | 
						
						
							| 9 | 
							
								5 8
							 | 
							eqtrdi | 
							 |-  ( ph -> F = ( u e. B |-> ( Base ` u ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							coires1 | 
							 |-  ( ( u e. U |-> ( Base ` u ) ) o. ( _I |` B ) ) = ( ( u e. U |-> ( Base ` u ) ) |` B )  | 
						
						
							| 11 | 
							
								1 3 4
							 | 
							rngcbas | 
							 |-  ( ph -> B = ( U i^i Rng ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							eleq2d | 
							 |-  ( ph -> ( x e. B <-> x e. ( U i^i Rng ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							elin | 
							 |-  ( x e. ( U i^i Rng ) <-> ( x e. U /\ x e. Rng ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							simplbi | 
							 |-  ( x e. ( U i^i Rng ) -> x e. U )  | 
						
						
							| 15 | 
							
								12 14
							 | 
							biimtrdi | 
							 |-  ( ph -> ( x e. B -> x e. U ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							ssrdv | 
							 |-  ( ph -> B C_ U )  | 
						
						
							| 17 | 
							
								16
							 | 
							resmptd | 
							 |-  ( ph -> ( ( u e. U |-> ( Base ` u ) ) |` B ) = ( u e. B |-> ( Base ` u ) ) )  | 
						
						
							| 18 | 
							
								10 17
							 | 
							eqtr2id | 
							 |-  ( ph -> ( u e. B |-> ( Base ` u ) ) = ( ( u e. U |-> ( Base ` u ) ) o. ( _I |` B ) ) )  | 
						
						
							| 19 | 
							
								9 18
							 | 
							eqtrd | 
							 |-  ( ph -> F = ( ( u e. U |-> ( Base ` u ) ) o. ( _I |` B ) ) )  | 
						
						
							| 20 | 
							
								
							 | 
							coires1 | 
							 |-  ( ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) o. ( _I |` ( x RngHom y ) ) ) = ( ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) |` ( x RngHom y ) )  | 
						
						
							| 21 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` x ) = ( Base ` x )  | 
						
						
							| 22 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` y ) = ( Base ` y )  | 
						
						
							| 23 | 
							
								21 22
							 | 
							rnghmf | 
							 |-  ( z e. ( x RngHom y ) -> z : ( Base ` x ) --> ( Base ` y ) )  | 
						
						
							| 24 | 
							
								
							 | 
							fvex | 
							 |-  ( Base ` y ) e. _V  | 
						
						
							| 25 | 
							
								
							 | 
							fvex | 
							 |-  ( Base ` x ) e. _V  | 
						
						
							| 26 | 
							
								24 25
							 | 
							pm3.2i | 
							 |-  ( ( Base ` y ) e. _V /\ ( Base ` x ) e. _V )  | 
						
						
							| 27 | 
							
								
							 | 
							elmapg | 
							 |-  ( ( ( Base ` y ) e. _V /\ ( Base ` x ) e. _V ) -> ( z e. ( ( Base ` y ) ^m ( Base ` x ) ) <-> z : ( Base ` x ) --> ( Base ` y ) ) )  | 
						
						
							| 28 | 
							
								26 27
							 | 
							mp1i | 
							 |-  ( ( ph /\ x e. B /\ y e. B ) -> ( z e. ( ( Base ` y ) ^m ( Base ` x ) ) <-> z : ( Base ` x ) --> ( Base ` y ) ) )  | 
						
						
							| 29 | 
							
								23 28
							 | 
							imbitrrid | 
							 |-  ( ( ph /\ x e. B /\ y e. B ) -> ( z e. ( x RngHom y ) -> z e. ( ( Base ` y ) ^m ( Base ` x ) ) ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							ssrdv | 
							 |-  ( ( ph /\ x e. B /\ y e. B ) -> ( x RngHom y ) C_ ( ( Base ` y ) ^m ( Base ` x ) ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							resabs1d | 
							 |-  ( ( ph /\ x e. B /\ y e. B ) -> ( ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) |` ( x RngHom y ) ) = ( _I |` ( x RngHom y ) ) )  | 
						
						
							| 32 | 
							
								20 31
							 | 
							eqtr2id | 
							 |-  ( ( ph /\ x e. B /\ y e. B ) -> ( _I |` ( x RngHom y ) ) = ( ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) o. ( _I |` ( x RngHom y ) ) ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							mpoeq3dva | 
							 |-  ( ph -> ( x e. B , y e. B |-> ( _I |` ( x RngHom y ) ) ) = ( x e. B , y e. B |-> ( ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) o. ( _I |` ( x RngHom y ) ) ) ) )  | 
						
						
							| 34 | 
							
								6 33
							 | 
							eqtrd | 
							 |-  ( ph -> G = ( x e. B , y e. B |-> ( ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) o. ( _I |` ( x RngHom y ) ) ) ) )  | 
						
						
							| 35 | 
							
								3
							 | 
							a1i | 
							 |-  ( ph -> B = ( Base ` R ) )  | 
						
						
							| 36 | 
							
								3
							 | 
							a1i | 
							 |-  ( ( ph /\ x e. B ) -> B = ( Base ` R ) )  | 
						
						
							| 37 | 
							
								
							 | 
							fvresi | 
							 |-  ( x e. B -> ( ( _I |` B ) ` x ) = x )  | 
						
						
							| 38 | 
							
								37
							 | 
							adantr | 
							 |-  ( ( x e. B /\ y e. B ) -> ( ( _I |` B ) ` x ) = x )  | 
						
						
							| 39 | 
							
								38
							 | 
							adantl | 
							 |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( ( _I |` B ) ` x ) = x )  | 
						
						
							| 40 | 
							
								
							 | 
							fvresi | 
							 |-  ( y e. B -> ( ( _I |` B ) ` y ) = y )  | 
						
						
							| 41 | 
							
								40
							 | 
							adantl | 
							 |-  ( ( x e. B /\ y e. B ) -> ( ( _I |` B ) ` y ) = y )  | 
						
						
							| 42 | 
							
								41
							 | 
							adantl | 
							 |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( ( _I |` B ) ` y ) = y )  | 
						
						
							| 43 | 
							
								39 42
							 | 
							oveq12d | 
							 |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( ( ( _I |` B ) ` x ) ( w e. U , z e. U |-> ( _I |` ( ( Base ` z ) ^m ( Base ` w ) ) ) ) ( ( _I |` B ) ` y ) ) = ( x ( w e. U , z e. U |-> ( _I |` ( ( Base ` z ) ^m ( Base ` w ) ) ) ) y ) )  | 
						
						
							| 44 | 
							
								
							 | 
							eqidd | 
							 |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( w e. U , z e. U |-> ( _I |` ( ( Base ` z ) ^m ( Base ` w ) ) ) ) = ( w e. U , z e. U |-> ( _I |` ( ( Base ` z ) ^m ( Base ` w ) ) ) ) )  | 
						
						
							| 45 | 
							
								
							 | 
							simprr | 
							 |-  ( ( ( ph /\ ( x e. B /\ y e. B ) ) /\ ( w = x /\ z = y ) ) -> z = y )  | 
						
						
							| 46 | 
							
								45
							 | 
							fveq2d | 
							 |-  ( ( ( ph /\ ( x e. B /\ y e. B ) ) /\ ( w = x /\ z = y ) ) -> ( Base ` z ) = ( Base ` y ) )  | 
						
						
							| 47 | 
							
								
							 | 
							simprl | 
							 |-  ( ( ( ph /\ ( x e. B /\ y e. B ) ) /\ ( w = x /\ z = y ) ) -> w = x )  | 
						
						
							| 48 | 
							
								47
							 | 
							fveq2d | 
							 |-  ( ( ( ph /\ ( x e. B /\ y e. B ) ) /\ ( w = x /\ z = y ) ) -> ( Base ` w ) = ( Base ` x ) )  | 
						
						
							| 49 | 
							
								46 48
							 | 
							oveq12d | 
							 |-  ( ( ( ph /\ ( x e. B /\ y e. B ) ) /\ ( w = x /\ z = y ) ) -> ( ( Base ` z ) ^m ( Base ` w ) ) = ( ( Base ` y ) ^m ( Base ` x ) ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							reseq2d | 
							 |-  ( ( ( ph /\ ( x e. B /\ y e. B ) ) /\ ( w = x /\ z = y ) ) -> ( _I |` ( ( Base ` z ) ^m ( Base ` w ) ) ) = ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) )  | 
						
						
							| 51 | 
							
								15
							 | 
							com12 | 
							 |-  ( x e. B -> ( ph -> x e. U ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							adantr | 
							 |-  ( ( x e. B /\ y e. B ) -> ( ph -> x e. U ) )  | 
						
						
							| 53 | 
							
								52
							 | 
							impcom | 
							 |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> x e. U )  | 
						
						
							| 54 | 
							
								11
							 | 
							eleq2d | 
							 |-  ( ph -> ( y e. B <-> y e. ( U i^i Rng ) ) )  | 
						
						
							| 55 | 
							
								
							 | 
							elin | 
							 |-  ( y e. ( U i^i Rng ) <-> ( y e. U /\ y e. Rng ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							simplbi | 
							 |-  ( y e. ( U i^i Rng ) -> y e. U )  | 
						
						
							| 57 | 
							
								54 56
							 | 
							biimtrdi | 
							 |-  ( ph -> ( y e. B -> y e. U ) )  | 
						
						
							| 58 | 
							
								57
							 | 
							a1d | 
							 |-  ( ph -> ( x e. B -> ( y e. B -> y e. U ) ) )  | 
						
						
							| 59 | 
							
								58
							 | 
							imp32 | 
							 |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> y e. U )  | 
						
						
							| 60 | 
							
								
							 | 
							ovex | 
							 |-  ( ( Base ` y ) ^m ( Base ` x ) ) e. _V  | 
						
						
							| 61 | 
							
								60
							 | 
							a1i | 
							 |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( ( Base ` y ) ^m ( Base ` x ) ) e. _V )  | 
						
						
							| 62 | 
							
								61
							 | 
							resiexd | 
							 |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) e. _V )  | 
						
						
							| 63 | 
							
								44 50 53 59 62
							 | 
							ovmpod | 
							 |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( w e. U , z e. U |-> ( _I |` ( ( Base ` z ) ^m ( Base ` w ) ) ) ) y ) = ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) )  | 
						
						
							| 64 | 
							
								43 63
							 | 
							eqtr2d | 
							 |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) = ( ( ( _I |` B ) ` x ) ( w e. U , z e. U |-> ( _I |` ( ( Base ` z ) ^m ( Base ` w ) ) ) ) ( ( _I |` B ) ` y ) ) )  | 
						
						
							| 65 | 
							
								
							 | 
							eqidd | 
							 |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( f e. B , g e. B |-> ( _I |` ( f RngHom g ) ) ) = ( f e. B , g e. B |-> ( _I |` ( f RngHom g ) ) ) )  | 
						
						
							| 66 | 
							
								
							 | 
							oveq12 | 
							 |-  ( ( f = x /\ g = y ) -> ( f RngHom g ) = ( x RngHom y ) )  | 
						
						
							| 67 | 
							
								66
							 | 
							reseq2d | 
							 |-  ( ( f = x /\ g = y ) -> ( _I |` ( f RngHom g ) ) = ( _I |` ( x RngHom y ) ) )  | 
						
						
							| 68 | 
							
								67
							 | 
							adantl | 
							 |-  ( ( ( ph /\ ( x e. B /\ y e. B ) ) /\ ( f = x /\ g = y ) ) -> ( _I |` ( f RngHom g ) ) = ( _I |` ( x RngHom y ) ) )  | 
						
						
							| 69 | 
							
								
							 | 
							simprl | 
							 |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> x e. B )  | 
						
						
							| 70 | 
							
								
							 | 
							simprr | 
							 |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> y e. B )  | 
						
						
							| 71 | 
							
								
							 | 
							ovex | 
							 |-  ( x RngHom y ) e. _V  | 
						
						
							| 72 | 
							
								71
							 | 
							a1i | 
							 |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x RngHom y ) e. _V )  | 
						
						
							| 73 | 
							
								72
							 | 
							resiexd | 
							 |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( _I |` ( x RngHom y ) ) e. _V )  | 
						
						
							| 74 | 
							
								65 68 69 70 73
							 | 
							ovmpod | 
							 |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( f e. B , g e. B |-> ( _I |` ( f RngHom g ) ) ) y ) = ( _I |` ( x RngHom y ) ) )  | 
						
						
							| 75 | 
							
								74
							 | 
							eqcomd | 
							 |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( _I |` ( x RngHom y ) ) = ( x ( f e. B , g e. B |-> ( _I |` ( f RngHom g ) ) ) y ) )  | 
						
						
							| 76 | 
							
								64 75
							 | 
							coeq12d | 
							 |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) o. ( _I |` ( x RngHom y ) ) ) = ( ( ( ( _I |` B ) ` x ) ( w e. U , z e. U |-> ( _I |` ( ( Base ` z ) ^m ( Base ` w ) ) ) ) ( ( _I |` B ) ` y ) ) o. ( x ( f e. B , g e. B |-> ( _I |` ( f RngHom g ) ) ) y ) ) )  | 
						
						
							| 77 | 
							
								35 36 76
							 | 
							mpoeq123dva | 
							 |-  ( ph -> ( x e. B , y e. B |-> ( ( _I |` ( ( Base ` y ) ^m ( Base ` x ) ) ) o. ( _I |` ( x RngHom y ) ) ) ) = ( x e. ( Base ` R ) , y e. ( Base ` R ) |-> ( ( ( ( _I |` B ) ` x ) ( w e. U , z e. U |-> ( _I |` ( ( Base ` z ) ^m ( Base ` w ) ) ) ) ( ( _I |` B ) ` y ) ) o. ( x ( f e. B , g e. B |-> ( _I |` ( f RngHom g ) ) ) y ) ) ) )  | 
						
						
							| 78 | 
							
								34 77
							 | 
							eqtrd | 
							 |-  ( ph -> G = ( x e. ( Base ` R ) , y e. ( Base ` R ) |-> ( ( ( ( _I |` B ) ` x ) ( w e. U , z e. U |-> ( _I |` ( ( Base ` z ) ^m ( Base ` w ) ) ) ) ( ( _I |` B ) ` y ) ) o. ( x ( f e. B , g e. B |-> ( _I |` ( f RngHom g ) ) ) y ) ) ) )  | 
						
						
							| 79 | 
							
								19 78
							 | 
							opeq12d | 
							 |-  ( ph -> <. F , G >. = <. ( ( u e. U |-> ( Base ` u ) ) o. ( _I |` B ) ) , ( x e. ( Base ` R ) , y e. ( Base ` R ) |-> ( ( ( ( _I |` B ) ` x ) ( w e. U , z e. U |-> ( _I |` ( ( Base ` z ) ^m ( Base ` w ) ) ) ) ( ( _I |` B ) ` y ) ) o. ( x ( f e. B , g e. B |-> ( _I |` ( f RngHom g ) ) ) y ) ) ) >. )  | 
						
						
							| 80 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` R ) = ( Base ` R )  | 
						
						
							| 81 | 
							
								
							 | 
							eqid | 
							 |-  ( ExtStrCat ` U ) = ( ExtStrCat ` U )  | 
						
						
							| 82 | 
							
								
							 | 
							eqidd | 
							 |-  ( ph -> ( _I |` B ) = ( _I |` B ) )  | 
						
						
							| 83 | 
							
								
							 | 
							eqidd | 
							 |-  ( ph -> ( f e. B , g e. B |-> ( _I |` ( f RngHom g ) ) ) = ( f e. B , g e. B |-> ( _I |` ( f RngHom g ) ) ) )  | 
						
						
							| 84 | 
							
								1 81 3 4 82 83
							 | 
							rngcifuestrc | 
							 |-  ( ph -> ( _I |` B ) ( R Func ( ExtStrCat ` U ) ) ( f e. B , g e. B |-> ( _I |` ( f RngHom g ) ) ) )  | 
						
						
							| 85 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` ( ExtStrCat ` U ) ) = ( Base ` ( ExtStrCat ` U ) )  | 
						
						
							| 86 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` S ) = ( Base ` S )  | 
						
						
							| 87 | 
							
								81 4
							 | 
							estrcbas | 
							 |-  ( ph -> U = ( Base ` ( ExtStrCat ` U ) ) )  | 
						
						
							| 88 | 
							
								87
							 | 
							mpteq1d | 
							 |-  ( ph -> ( u e. U |-> ( Base ` u ) ) = ( u e. ( Base ` ( ExtStrCat ` U ) ) |-> ( Base ` u ) ) )  | 
						
						
							| 89 | 
							
								
							 | 
							fveq2 | 
							 |-  ( w = u -> ( Base ` w ) = ( Base ` u ) )  | 
						
						
							| 90 | 
							
								89
							 | 
							oveq2d | 
							 |-  ( w = u -> ( ( Base ` z ) ^m ( Base ` w ) ) = ( ( Base ` z ) ^m ( Base ` u ) ) )  | 
						
						
							| 91 | 
							
								90
							 | 
							reseq2d | 
							 |-  ( w = u -> ( _I |` ( ( Base ` z ) ^m ( Base ` w ) ) ) = ( _I |` ( ( Base ` z ) ^m ( Base ` u ) ) ) )  | 
						
						
							| 92 | 
							
								
							 | 
							fveq2 | 
							 |-  ( z = v -> ( Base ` z ) = ( Base ` v ) )  | 
						
						
							| 93 | 
							
								92
							 | 
							oveq1d | 
							 |-  ( z = v -> ( ( Base ` z ) ^m ( Base ` u ) ) = ( ( Base ` v ) ^m ( Base ` u ) ) )  | 
						
						
							| 94 | 
							
								93
							 | 
							reseq2d | 
							 |-  ( z = v -> ( _I |` ( ( Base ` z ) ^m ( Base ` u ) ) ) = ( _I |` ( ( Base ` v ) ^m ( Base ` u ) ) ) )  | 
						
						
							| 95 | 
							
								91 94
							 | 
							cbvmpov | 
							 |-  ( w e. U , z e. U |-> ( _I |` ( ( Base ` z ) ^m ( Base ` w ) ) ) ) = ( u e. U , v e. U |-> ( _I |` ( ( Base ` v ) ^m ( Base ` u ) ) ) )  | 
						
						
							| 96 | 
							
								95
							 | 
							a1i | 
							 |-  ( ph -> ( w e. U , z e. U |-> ( _I |` ( ( Base ` z ) ^m ( Base ` w ) ) ) ) = ( u e. U , v e. U |-> ( _I |` ( ( Base ` v ) ^m ( Base ` u ) ) ) ) )  | 
						
						
							| 97 | 
							
								
							 | 
							eqidd | 
							 |-  ( ph -> ( _I |` ( ( Base ` v ) ^m ( Base ` u ) ) ) = ( _I |` ( ( Base ` v ) ^m ( Base ` u ) ) ) )  | 
						
						
							| 98 | 
							
								87 87 97
							 | 
							mpoeq123dv | 
							 |-  ( ph -> ( u e. U , v e. U |-> ( _I |` ( ( Base ` v ) ^m ( Base ` u ) ) ) ) = ( u e. ( Base ` ( ExtStrCat ` U ) ) , v e. ( Base ` ( ExtStrCat ` U ) ) |-> ( _I |` ( ( Base ` v ) ^m ( Base ` u ) ) ) ) )  | 
						
						
							| 99 | 
							
								96 98
							 | 
							eqtrd | 
							 |-  ( ph -> ( w e. U , z e. U |-> ( _I |` ( ( Base ` z ) ^m ( Base ` w ) ) ) ) = ( u e. ( Base ` ( ExtStrCat ` U ) ) , v e. ( Base ` ( ExtStrCat ` U ) ) |-> ( _I |` ( ( Base ` v ) ^m ( Base ` u ) ) ) ) )  | 
						
						
							| 100 | 
							
								81 2 85 86 4 88 99
							 | 
							funcestrcsetc | 
							 |-  ( ph -> ( u e. U |-> ( Base ` u ) ) ( ( ExtStrCat ` U ) Func S ) ( w e. U , z e. U |-> ( _I |` ( ( Base ` z ) ^m ( Base ` w ) ) ) ) )  | 
						
						
							| 101 | 
							
								80 84 100
							 | 
							cofuval2 | 
							 |-  ( ph -> ( <. ( u e. U |-> ( Base ` u ) ) , ( w e. U , z e. U |-> ( _I |` ( ( Base ` z ) ^m ( Base ` w ) ) ) ) >. o.func <. ( _I |` B ) , ( f e. B , g e. B |-> ( _I |` ( f RngHom g ) ) ) >. ) = <. ( ( u e. U |-> ( Base ` u ) ) o. ( _I |` B ) ) , ( x e. ( Base ` R ) , y e. ( Base ` R ) |-> ( ( ( ( _I |` B ) ` x ) ( w e. U , z e. U |-> ( _I |` ( ( Base ` z ) ^m ( Base ` w ) ) ) ) ( ( _I |` B ) ` y ) ) o. ( x ( f e. B , g e. B |-> ( _I |` ( f RngHom g ) ) ) y ) ) ) >. )  | 
						
						
							| 102 | 
							
								79 101
							 | 
							eqtr4d | 
							 |-  ( ph -> <. F , G >. = ( <. ( u e. U |-> ( Base ` u ) ) , ( w e. U , z e. U |-> ( _I |` ( ( Base ` z ) ^m ( Base ` w ) ) ) ) >. o.func <. ( _I |` B ) , ( f e. B , g e. B |-> ( _I |` ( f RngHom g ) ) ) >. ) )  | 
						
						
							| 103 | 
							
								
							 | 
							df-br | 
							 |-  ( ( _I |` B ) ( R Func ( ExtStrCat ` U ) ) ( f e. B , g e. B |-> ( _I |` ( f RngHom g ) ) ) <-> <. ( _I |` B ) , ( f e. B , g e. B |-> ( _I |` ( f RngHom g ) ) ) >. e. ( R Func ( ExtStrCat ` U ) ) )  | 
						
						
							| 104 | 
							
								84 103
							 | 
							sylib | 
							 |-  ( ph -> <. ( _I |` B ) , ( f e. B , g e. B |-> ( _I |` ( f RngHom g ) ) ) >. e. ( R Func ( ExtStrCat ` U ) ) )  | 
						
						
							| 105 | 
							
								
							 | 
							df-br | 
							 |-  ( ( u e. U |-> ( Base ` u ) ) ( ( ExtStrCat ` U ) Func S ) ( w e. U , z e. U |-> ( _I |` ( ( Base ` z ) ^m ( Base ` w ) ) ) ) <-> <. ( u e. U |-> ( Base ` u ) ) , ( w e. U , z e. U |-> ( _I |` ( ( Base ` z ) ^m ( Base ` w ) ) ) ) >. e. ( ( ExtStrCat ` U ) Func S ) )  | 
						
						
							| 106 | 
							
								100 105
							 | 
							sylib | 
							 |-  ( ph -> <. ( u e. U |-> ( Base ` u ) ) , ( w e. U , z e. U |-> ( _I |` ( ( Base ` z ) ^m ( Base ` w ) ) ) ) >. e. ( ( ExtStrCat ` U ) Func S ) )  | 
						
						
							| 107 | 
							
								104 106
							 | 
							cofucl | 
							 |-  ( ph -> ( <. ( u e. U |-> ( Base ` u ) ) , ( w e. U , z e. U |-> ( _I |` ( ( Base ` z ) ^m ( Base ` w ) ) ) ) >. o.func <. ( _I |` B ) , ( f e. B , g e. B |-> ( _I |` ( f RngHom g ) ) ) >. ) e. ( R Func S ) )  | 
						
						
							| 108 | 
							
								102 107
							 | 
							eqeltrd | 
							 |-  ( ph -> <. F , G >. e. ( R Func S ) )  | 
						
						
							| 109 | 
							
								
							 | 
							df-br | 
							 |-  ( F ( R Func S ) G <-> <. F , G >. e. ( R Func S ) )  | 
						
						
							| 110 | 
							
								108 109
							 | 
							sylibr | 
							 |-  ( ph -> F ( R Func S ) G )  |