Step |
Hyp |
Ref |
Expression |
1 |
|
funcsect.b |
|- B = ( Base ` D ) |
2 |
|
funcsect.s |
|- S = ( Sect ` D ) |
3 |
|
funcsect.t |
|- T = ( Sect ` E ) |
4 |
|
funcsect.f |
|- ( ph -> F ( D Func E ) G ) |
5 |
|
funcsect.x |
|- ( ph -> X e. B ) |
6 |
|
funcsect.y |
|- ( ph -> Y e. B ) |
7 |
|
funcsect.m |
|- ( ph -> M ( X S Y ) N ) |
8 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
9 |
|
eqid |
|- ( comp ` D ) = ( comp ` D ) |
10 |
|
eqid |
|- ( Id ` D ) = ( Id ` D ) |
11 |
|
df-br |
|- ( F ( D Func E ) G <-> <. F , G >. e. ( D Func E ) ) |
12 |
4 11
|
sylib |
|- ( ph -> <. F , G >. e. ( D Func E ) ) |
13 |
|
funcrcl |
|- ( <. F , G >. e. ( D Func E ) -> ( D e. Cat /\ E e. Cat ) ) |
14 |
12 13
|
syl |
|- ( ph -> ( D e. Cat /\ E e. Cat ) ) |
15 |
14
|
simpld |
|- ( ph -> D e. Cat ) |
16 |
1 8 9 10 2 15 5 6
|
issect |
|- ( ph -> ( M ( X S Y ) N <-> ( M e. ( X ( Hom ` D ) Y ) /\ N e. ( Y ( Hom ` D ) X ) /\ ( N ( <. X , Y >. ( comp ` D ) X ) M ) = ( ( Id ` D ) ` X ) ) ) ) |
17 |
7 16
|
mpbid |
|- ( ph -> ( M e. ( X ( Hom ` D ) Y ) /\ N e. ( Y ( Hom ` D ) X ) /\ ( N ( <. X , Y >. ( comp ` D ) X ) M ) = ( ( Id ` D ) ` X ) ) ) |
18 |
17
|
simp3d |
|- ( ph -> ( N ( <. X , Y >. ( comp ` D ) X ) M ) = ( ( Id ` D ) ` X ) ) |
19 |
18
|
fveq2d |
|- ( ph -> ( ( X G X ) ` ( N ( <. X , Y >. ( comp ` D ) X ) M ) ) = ( ( X G X ) ` ( ( Id ` D ) ` X ) ) ) |
20 |
|
eqid |
|- ( comp ` E ) = ( comp ` E ) |
21 |
17
|
simp1d |
|- ( ph -> M e. ( X ( Hom ` D ) Y ) ) |
22 |
17
|
simp2d |
|- ( ph -> N e. ( Y ( Hom ` D ) X ) ) |
23 |
1 8 9 20 4 5 6 5 21 22
|
funcco |
|- ( ph -> ( ( X G X ) ` ( N ( <. X , Y >. ( comp ` D ) X ) M ) ) = ( ( ( Y G X ) ` N ) ( <. ( F ` X ) , ( F ` Y ) >. ( comp ` E ) ( F ` X ) ) ( ( X G Y ) ` M ) ) ) |
24 |
|
eqid |
|- ( Id ` E ) = ( Id ` E ) |
25 |
1 10 24 4 5
|
funcid |
|- ( ph -> ( ( X G X ) ` ( ( Id ` D ) ` X ) ) = ( ( Id ` E ) ` ( F ` X ) ) ) |
26 |
19 23 25
|
3eqtr3d |
|- ( ph -> ( ( ( Y G X ) ` N ) ( <. ( F ` X ) , ( F ` Y ) >. ( comp ` E ) ( F ` X ) ) ( ( X G Y ) ` M ) ) = ( ( Id ` E ) ` ( F ` X ) ) ) |
27 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
28 |
|
eqid |
|- ( Hom ` E ) = ( Hom ` E ) |
29 |
14
|
simprd |
|- ( ph -> E e. Cat ) |
30 |
1 27 4
|
funcf1 |
|- ( ph -> F : B --> ( Base ` E ) ) |
31 |
30 5
|
ffvelrnd |
|- ( ph -> ( F ` X ) e. ( Base ` E ) ) |
32 |
30 6
|
ffvelrnd |
|- ( ph -> ( F ` Y ) e. ( Base ` E ) ) |
33 |
1 8 28 4 5 6
|
funcf2 |
|- ( ph -> ( X G Y ) : ( X ( Hom ` D ) Y ) --> ( ( F ` X ) ( Hom ` E ) ( F ` Y ) ) ) |
34 |
33 21
|
ffvelrnd |
|- ( ph -> ( ( X G Y ) ` M ) e. ( ( F ` X ) ( Hom ` E ) ( F ` Y ) ) ) |
35 |
1 8 28 4 6 5
|
funcf2 |
|- ( ph -> ( Y G X ) : ( Y ( Hom ` D ) X ) --> ( ( F ` Y ) ( Hom ` E ) ( F ` X ) ) ) |
36 |
35 22
|
ffvelrnd |
|- ( ph -> ( ( Y G X ) ` N ) e. ( ( F ` Y ) ( Hom ` E ) ( F ` X ) ) ) |
37 |
27 28 20 24 3 29 31 32 34 36
|
issect2 |
|- ( ph -> ( ( ( X G Y ) ` M ) ( ( F ` X ) T ( F ` Y ) ) ( ( Y G X ) ` N ) <-> ( ( ( Y G X ) ` N ) ( <. ( F ` X ) , ( F ` Y ) >. ( comp ` E ) ( F ` X ) ) ( ( X G Y ) ` M ) ) = ( ( Id ` E ) ` ( F ` X ) ) ) ) |
38 |
26 37
|
mpbird |
|- ( ph -> ( ( X G Y ) ` M ) ( ( F ` X ) T ( F ` Y ) ) ( ( Y G X ) ` N ) ) |