| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							funcsetcestrc.s | 
							 |-  S = ( SetCat ` U )  | 
						
						
							| 2 | 
							
								
							 | 
							funcsetcestrc.c | 
							 |-  C = ( Base ` S )  | 
						
						
							| 3 | 
							
								
							 | 
							funcsetcestrc.f | 
							 |-  ( ph -> F = ( x e. C |-> { <. ( Base ` ndx ) , x >. } ) ) | 
						
						
							| 4 | 
							
								
							 | 
							funcsetcestrc.u | 
							 |-  ( ph -> U e. WUni )  | 
						
						
							| 5 | 
							
								
							 | 
							funcsetcestrc.o | 
							 |-  ( ph -> _om e. U )  | 
						
						
							| 6 | 
							
								
							 | 
							funcsetcestrc.g | 
							 |-  ( ph -> G = ( x e. C , y e. C |-> ( _I |` ( y ^m x ) ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							funcsetcestrc.e | 
							 |-  E = ( ExtStrCat ` U )  | 
						
						
							| 8 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` E ) = ( Base ` E )  | 
						
						
							| 9 | 
							
								
							 | 
							eqid | 
							 |-  ( Hom ` S ) = ( Hom ` S )  | 
						
						
							| 10 | 
							
								
							 | 
							eqid | 
							 |-  ( Hom ` E ) = ( Hom ` E )  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							 |-  ( Id ` S ) = ( Id ` S )  | 
						
						
							| 12 | 
							
								
							 | 
							eqid | 
							 |-  ( Id ` E ) = ( Id ` E )  | 
						
						
							| 13 | 
							
								
							 | 
							eqid | 
							 |-  ( comp ` S ) = ( comp ` S )  | 
						
						
							| 14 | 
							
								
							 | 
							eqid | 
							 |-  ( comp ` E ) = ( comp ` E )  | 
						
						
							| 15 | 
							
								1
							 | 
							setccat | 
							 |-  ( U e. WUni -> S e. Cat )  | 
						
						
							| 16 | 
							
								4 15
							 | 
							syl | 
							 |-  ( ph -> S e. Cat )  | 
						
						
							| 17 | 
							
								7
							 | 
							estrccat | 
							 |-  ( U e. WUni -> E e. Cat )  | 
						
						
							| 18 | 
							
								4 17
							 | 
							syl | 
							 |-  ( ph -> E e. Cat )  | 
						
						
							| 19 | 
							
								1 2 3 4 5 7 8
							 | 
							funcsetcestrclem3 | 
							 |-  ( ph -> F : C --> ( Base ` E ) )  | 
						
						
							| 20 | 
							
								1 2 3 4 5 6
							 | 
							funcsetcestrclem4 | 
							 |-  ( ph -> G Fn ( C X. C ) )  | 
						
						
							| 21 | 
							
								1 2 3 4 5 6 7
							 | 
							funcsetcestrclem8 | 
							 |-  ( ( ph /\ ( a e. C /\ b e. C ) ) -> ( a G b ) : ( a ( Hom ` S ) b ) --> ( ( F ` a ) ( Hom ` E ) ( F ` b ) ) )  | 
						
						
							| 22 | 
							
								1 2 3 4 5 6 7
							 | 
							funcsetcestrclem7 | 
							 |-  ( ( ph /\ a e. C ) -> ( ( a G a ) ` ( ( Id ` S ) ` a ) ) = ( ( Id ` E ) ` ( F ` a ) ) )  | 
						
						
							| 23 | 
							
								1 2 3 4 5 6 7
							 | 
							funcsetcestrclem9 | 
							 |-  ( ( ph /\ ( a e. C /\ b e. C /\ c e. C ) /\ ( h e. ( a ( Hom ` S ) b ) /\ k e. ( b ( Hom ` S ) c ) ) ) -> ( ( a G c ) ` ( k ( <. a , b >. ( comp ` S ) c ) h ) ) = ( ( ( b G c ) ` k ) ( <. ( F ` a ) , ( F ` b ) >. ( comp ` E ) ( F ` c ) ) ( ( a G b ) ` h ) ) )  | 
						
						
							| 24 | 
							
								2 8 9 10 11 12 13 14 16 18 19 20 21 22 23
							 | 
							isfuncd | 
							 |-  ( ph -> F ( S Func E ) G )  |