| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							funcsetcestrc.s | 
							 |-  S = ( SetCat ` U )  | 
						
						
							| 2 | 
							
								
							 | 
							funcsetcestrc.c | 
							 |-  C = ( Base ` S )  | 
						
						
							| 3 | 
							
								
							 | 
							funcsetcestrc.f | 
							 |-  ( ph -> F = ( x e. C |-> { <. ( Base ` ndx ) , x >. } ) ) | 
						
						
							| 4 | 
							
								3
							 | 
							adantr | 
							 |-  ( ( ph /\ X e. C ) -> F = ( x e. C |-> { <. ( Base ` ndx ) , x >. } ) ) | 
						
						
							| 5 | 
							
								
							 | 
							opeq2 | 
							 |-  ( x = X -> <. ( Base ` ndx ) , x >. = <. ( Base ` ndx ) , X >. )  | 
						
						
							| 6 | 
							
								5
							 | 
							sneqd | 
							 |-  ( x = X -> { <. ( Base ` ndx ) , x >. } = { <. ( Base ` ndx ) , X >. } ) | 
						
						
							| 7 | 
							
								6
							 | 
							adantl | 
							 |-  ( ( ( ph /\ X e. C ) /\ x = X ) -> { <. ( Base ` ndx ) , x >. } = { <. ( Base ` ndx ) , X >. } ) | 
						
						
							| 8 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ X e. C ) -> X e. C )  | 
						
						
							| 9 | 
							
								
							 | 
							snex | 
							 |-  { <. ( Base ` ndx ) , X >. } e. _V | 
						
						
							| 10 | 
							
								9
							 | 
							a1i | 
							 |-  ( ( ph /\ X e. C ) -> { <. ( Base ` ndx ) , X >. } e. _V ) | 
						
						
							| 11 | 
							
								4 7 8 10
							 | 
							fvmptd | 
							 |-  ( ( ph /\ X e. C ) -> ( F ` X ) = { <. ( Base ` ndx ) , X >. } ) |