Description: Lemma 2 for funcsetcestrc . (Contributed by AV, 27-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcsetcestrc.s | |- S = ( SetCat ` U )  | 
					|
| funcsetcestrc.c | |- C = ( Base ` S )  | 
					||
| funcsetcestrc.f | |- ( ph -> F = ( x e. C |-> { <. ( Base ` ndx ) , x >. } ) ) | 
					||
| funcsetcestrc.u | |- ( ph -> U e. WUni )  | 
					||
| funcsetcestrc.o | |- ( ph -> _om e. U )  | 
					||
| Assertion | funcsetcestrclem2 | |- ( ( ph /\ X e. C ) -> ( F ` X ) e. U )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | funcsetcestrc.s | |- S = ( SetCat ` U )  | 
						|
| 2 | funcsetcestrc.c | |- C = ( Base ` S )  | 
						|
| 3 | funcsetcestrc.f |  |-  ( ph -> F = ( x e. C |-> { <. ( Base ` ndx ) , x >. } ) ) | 
						|
| 4 | funcsetcestrc.u | |- ( ph -> U e. WUni )  | 
						|
| 5 | funcsetcestrc.o | |- ( ph -> _om e. U )  | 
						|
| 6 | 1 2 3 | funcsetcestrclem1 |  |-  ( ( ph /\ X e. C ) -> ( F ` X ) = { <. ( Base ` ndx ) , X >. } ) | 
						
| 7 | 1 2 4 5 | setc1strwun |  |-  ( ( ph /\ X e. C ) -> { <. ( Base ` ndx ) , X >. } e. U ) | 
						
| 8 | 6 7 | eqeltrd | |- ( ( ph /\ X e. C ) -> ( F ` X ) e. U )  |