Step |
Hyp |
Ref |
Expression |
1 |
|
functhinclem1.b |
|- B = ( Base ` D ) |
2 |
|
functhinclem1.c |
|- C = ( Base ` E ) |
3 |
|
functhinclem1.h |
|- H = ( Hom ` D ) |
4 |
|
functhinclem1.j |
|- J = ( Hom ` E ) |
5 |
|
functhinclem1.e |
|- ( ph -> E e. ThinCat ) |
6 |
|
functhinclem1.f |
|- ( ph -> F : B --> C ) |
7 |
|
functhinclem1.k |
|- K = ( x e. B , y e. B |-> ( ( x H y ) X. ( ( F ` x ) J ( F ` y ) ) ) ) |
8 |
|
functhinclem1.1 |
|- ( ( ph /\ ( z e. B /\ w e. B ) ) -> ( ( ( F ` z ) J ( F ` w ) ) = (/) -> ( z H w ) = (/) ) ) |
9 |
|
simpl |
|- ( ( ph /\ ( G e. _V /\ G Fn ( B X. B ) /\ A. z e. B A. w e. B ( z G w ) : ( z H w ) --> ( ( F ` z ) J ( F ` w ) ) ) ) -> ph ) |
10 |
|
simpr2 |
|- ( ( ph /\ ( G e. _V /\ G Fn ( B X. B ) /\ A. z e. B A. w e. B ( z G w ) : ( z H w ) --> ( ( F ` z ) J ( F ` w ) ) ) ) -> G Fn ( B X. B ) ) |
11 |
|
simpr3 |
|- ( ( ph /\ ( G e. _V /\ G Fn ( B X. B ) /\ A. z e. B A. w e. B ( z G w ) : ( z H w ) --> ( ( F ` z ) J ( F ` w ) ) ) ) -> A. z e. B A. w e. B ( z G w ) : ( z H w ) --> ( ( F ` z ) J ( F ` w ) ) ) |
12 |
|
eqid |
|- ( ( z H w ) X. ( ( F ` z ) J ( F ` w ) ) ) = ( ( z H w ) X. ( ( F ` z ) J ( F ` w ) ) ) |
13 |
8
|
adantlr |
|- ( ( ( ph /\ G Fn ( B X. B ) ) /\ ( z e. B /\ w e. B ) ) -> ( ( ( F ` z ) J ( F ` w ) ) = (/) -> ( z H w ) = (/) ) ) |
14 |
5
|
ad2antrr |
|- ( ( ( ph /\ G Fn ( B X. B ) ) /\ ( z e. B /\ w e. B ) ) -> E e. ThinCat ) |
15 |
6
|
ad2antrr |
|- ( ( ( ph /\ G Fn ( B X. B ) ) /\ ( z e. B /\ w e. B ) ) -> F : B --> C ) |
16 |
|
simprl |
|- ( ( ( ph /\ G Fn ( B X. B ) ) /\ ( z e. B /\ w e. B ) ) -> z e. B ) |
17 |
15 16
|
ffvelrnd |
|- ( ( ( ph /\ G Fn ( B X. B ) ) /\ ( z e. B /\ w e. B ) ) -> ( F ` z ) e. C ) |
18 |
|
simprr |
|- ( ( ( ph /\ G Fn ( B X. B ) ) /\ ( z e. B /\ w e. B ) ) -> w e. B ) |
19 |
15 18
|
ffvelrnd |
|- ( ( ( ph /\ G Fn ( B X. B ) ) /\ ( z e. B /\ w e. B ) ) -> ( F ` w ) e. C ) |
20 |
14 17 19 2 4
|
thincmo |
|- ( ( ( ph /\ G Fn ( B X. B ) ) /\ ( z e. B /\ w e. B ) ) -> E* m m e. ( ( F ` z ) J ( F ` w ) ) ) |
21 |
12 13 20
|
mofeu |
|- ( ( ( ph /\ G Fn ( B X. B ) ) /\ ( z e. B /\ w e. B ) ) -> ( ( z G w ) : ( z H w ) --> ( ( F ` z ) J ( F ` w ) ) <-> ( z G w ) = ( ( z H w ) X. ( ( F ` z ) J ( F ` w ) ) ) ) ) |
22 |
|
oveq1 |
|- ( x = z -> ( x H y ) = ( z H y ) ) |
23 |
|
fveq2 |
|- ( x = z -> ( F ` x ) = ( F ` z ) ) |
24 |
23
|
oveq1d |
|- ( x = z -> ( ( F ` x ) J ( F ` y ) ) = ( ( F ` z ) J ( F ` y ) ) ) |
25 |
22 24
|
xpeq12d |
|- ( x = z -> ( ( x H y ) X. ( ( F ` x ) J ( F ` y ) ) ) = ( ( z H y ) X. ( ( F ` z ) J ( F ` y ) ) ) ) |
26 |
|
oveq2 |
|- ( y = w -> ( z H y ) = ( z H w ) ) |
27 |
|
fveq2 |
|- ( y = w -> ( F ` y ) = ( F ` w ) ) |
28 |
27
|
oveq2d |
|- ( y = w -> ( ( F ` z ) J ( F ` y ) ) = ( ( F ` z ) J ( F ` w ) ) ) |
29 |
26 28
|
xpeq12d |
|- ( y = w -> ( ( z H y ) X. ( ( F ` z ) J ( F ` y ) ) ) = ( ( z H w ) X. ( ( F ` z ) J ( F ` w ) ) ) ) |
30 |
|
ovex |
|- ( z H w ) e. _V |
31 |
|
ovex |
|- ( ( F ` z ) J ( F ` w ) ) e. _V |
32 |
30 31
|
xpex |
|- ( ( z H w ) X. ( ( F ` z ) J ( F ` w ) ) ) e. _V |
33 |
25 29 7 32
|
ovmpo |
|- ( ( z e. B /\ w e. B ) -> ( z K w ) = ( ( z H w ) X. ( ( F ` z ) J ( F ` w ) ) ) ) |
34 |
33
|
adantl |
|- ( ( ( ph /\ G Fn ( B X. B ) ) /\ ( z e. B /\ w e. B ) ) -> ( z K w ) = ( ( z H w ) X. ( ( F ` z ) J ( F ` w ) ) ) ) |
35 |
34
|
eqeq2d |
|- ( ( ( ph /\ G Fn ( B X. B ) ) /\ ( z e. B /\ w e. B ) ) -> ( ( z G w ) = ( z K w ) <-> ( z G w ) = ( ( z H w ) X. ( ( F ` z ) J ( F ` w ) ) ) ) ) |
36 |
21 35
|
bitr4d |
|- ( ( ( ph /\ G Fn ( B X. B ) ) /\ ( z e. B /\ w e. B ) ) -> ( ( z G w ) : ( z H w ) --> ( ( F ` z ) J ( F ` w ) ) <-> ( z G w ) = ( z K w ) ) ) |
37 |
36
|
2ralbidva |
|- ( ( ph /\ G Fn ( B X. B ) ) -> ( A. z e. B A. w e. B ( z G w ) : ( z H w ) --> ( ( F ` z ) J ( F ` w ) ) <-> A. z e. B A. w e. B ( z G w ) = ( z K w ) ) ) |
38 |
|
simpr |
|- ( ( ph /\ G Fn ( B X. B ) ) -> G Fn ( B X. B ) ) |
39 |
|
ovex |
|- ( x H y ) e. _V |
40 |
|
ovex |
|- ( ( F ` x ) J ( F ` y ) ) e. _V |
41 |
39 40
|
xpex |
|- ( ( x H y ) X. ( ( F ` x ) J ( F ` y ) ) ) e. _V |
42 |
7 41
|
fnmpoi |
|- K Fn ( B X. B ) |
43 |
|
eqfnov2 |
|- ( ( G Fn ( B X. B ) /\ K Fn ( B X. B ) ) -> ( G = K <-> A. z e. B A. w e. B ( z G w ) = ( z K w ) ) ) |
44 |
38 42 43
|
sylancl |
|- ( ( ph /\ G Fn ( B X. B ) ) -> ( G = K <-> A. z e. B A. w e. B ( z G w ) = ( z K w ) ) ) |
45 |
37 44
|
bitr4d |
|- ( ( ph /\ G Fn ( B X. B ) ) -> ( A. z e. B A. w e. B ( z G w ) : ( z H w ) --> ( ( F ` z ) J ( F ` w ) ) <-> G = K ) ) |
46 |
45
|
biimpa |
|- ( ( ( ph /\ G Fn ( B X. B ) ) /\ A. z e. B A. w e. B ( z G w ) : ( z H w ) --> ( ( F ` z ) J ( F ` w ) ) ) -> G = K ) |
47 |
9 10 11 46
|
syl21anc |
|- ( ( ph /\ ( G e. _V /\ G Fn ( B X. B ) /\ A. z e. B A. w e. B ( z G w ) : ( z H w ) --> ( ( F ` z ) J ( F ` w ) ) ) ) -> G = K ) |
48 |
1
|
fvexi |
|- B e. _V |
49 |
48 48
|
mpoex |
|- ( x e. B , y e. B |-> ( ( x H y ) X. ( ( F ` x ) J ( F ` y ) ) ) ) e. _V |
50 |
7 49
|
eqeltri |
|- K e. _V |
51 |
|
eleq1 |
|- ( G = K -> ( G e. _V <-> K e. _V ) ) |
52 |
50 51
|
mpbiri |
|- ( G = K -> G e. _V ) |
53 |
52
|
adantl |
|- ( ( ph /\ G = K ) -> G e. _V ) |
54 |
|
fneq1 |
|- ( G = K -> ( G Fn ( B X. B ) <-> K Fn ( B X. B ) ) ) |
55 |
42 54
|
mpbiri |
|- ( G = K -> G Fn ( B X. B ) ) |
56 |
55
|
adantl |
|- ( ( ph /\ G = K ) -> G Fn ( B X. B ) ) |
57 |
|
simpl |
|- ( ( ph /\ G = K ) -> ph ) |
58 |
|
simpr |
|- ( ( ph /\ G = K ) -> G = K ) |
59 |
45
|
biimpar |
|- ( ( ( ph /\ G Fn ( B X. B ) ) /\ G = K ) -> A. z e. B A. w e. B ( z G w ) : ( z H w ) --> ( ( F ` z ) J ( F ` w ) ) ) |
60 |
57 56 58 59
|
syl21anc |
|- ( ( ph /\ G = K ) -> A. z e. B A. w e. B ( z G w ) : ( z H w ) --> ( ( F ` z ) J ( F ` w ) ) ) |
61 |
53 56 60
|
3jca |
|- ( ( ph /\ G = K ) -> ( G e. _V /\ G Fn ( B X. B ) /\ A. z e. B A. w e. B ( z G w ) : ( z H w ) --> ( ( F ` z ) J ( F ` w ) ) ) ) |
62 |
47 61
|
impbida |
|- ( ph -> ( ( G e. _V /\ G Fn ( B X. B ) /\ A. z e. B A. w e. B ( z G w ) : ( z H w ) --> ( ( F ` z ) J ( F ` w ) ) ) <-> G = K ) ) |