Step |
Hyp |
Ref |
Expression |
1 |
|
functhinclem2.x |
|- ( ph -> X e. B ) |
2 |
|
functhinclem2.y |
|- ( ph -> Y e. B ) |
3 |
|
functhinclem2.1 |
|- ( ph -> A. x e. B A. y e. B ( ( ( F ` x ) J ( F ` y ) ) = (/) -> ( x H y ) = (/) ) ) |
4 |
|
simpl |
|- ( ( x = X /\ y = Y ) -> x = X ) |
5 |
4
|
fveq2d |
|- ( ( x = X /\ y = Y ) -> ( F ` x ) = ( F ` X ) ) |
6 |
|
simpr |
|- ( ( x = X /\ y = Y ) -> y = Y ) |
7 |
6
|
fveq2d |
|- ( ( x = X /\ y = Y ) -> ( F ` y ) = ( F ` Y ) ) |
8 |
5 7
|
oveq12d |
|- ( ( x = X /\ y = Y ) -> ( ( F ` x ) J ( F ` y ) ) = ( ( F ` X ) J ( F ` Y ) ) ) |
9 |
8
|
eqeq1d |
|- ( ( x = X /\ y = Y ) -> ( ( ( F ` x ) J ( F ` y ) ) = (/) <-> ( ( F ` X ) J ( F ` Y ) ) = (/) ) ) |
10 |
|
oveq12 |
|- ( ( x = X /\ y = Y ) -> ( x H y ) = ( X H Y ) ) |
11 |
10
|
eqeq1d |
|- ( ( x = X /\ y = Y ) -> ( ( x H y ) = (/) <-> ( X H Y ) = (/) ) ) |
12 |
9 11
|
imbi12d |
|- ( ( x = X /\ y = Y ) -> ( ( ( ( F ` x ) J ( F ` y ) ) = (/) -> ( x H y ) = (/) ) <-> ( ( ( F ` X ) J ( F ` Y ) ) = (/) -> ( X H Y ) = (/) ) ) ) |
13 |
12
|
rspc2gv |
|- ( ( X e. B /\ Y e. B ) -> ( A. x e. B A. y e. B ( ( ( F ` x ) J ( F ` y ) ) = (/) -> ( x H y ) = (/) ) -> ( ( ( F ` X ) J ( F ` Y ) ) = (/) -> ( X H Y ) = (/) ) ) ) |
14 |
13
|
imp |
|- ( ( ( X e. B /\ Y e. B ) /\ A. x e. B A. y e. B ( ( ( F ` x ) J ( F ` y ) ) = (/) -> ( x H y ) = (/) ) ) -> ( ( ( F ` X ) J ( F ` Y ) ) = (/) -> ( X H Y ) = (/) ) ) |
15 |
1 2 3 14
|
syl21anc |
|- ( ph -> ( ( ( F ` X ) J ( F ` Y ) ) = (/) -> ( X H Y ) = (/) ) ) |