Step |
Hyp |
Ref |
Expression |
1 |
|
functhinclem3.x |
|- ( ph -> X e. B ) |
2 |
|
functhinclem3.y |
|- ( ph -> Y e. B ) |
3 |
|
functhinclem3.m |
|- ( ph -> M e. ( X H Y ) ) |
4 |
|
functhinclem3.g |
|- ( ph -> G = ( x e. B , y e. B |-> ( ( x H y ) X. ( ( F ` x ) J ( F ` y ) ) ) ) ) |
5 |
|
functhinclem3.1 |
|- ( ph -> ( ( ( F ` X ) J ( F ` Y ) ) = (/) -> ( X H Y ) = (/) ) ) |
6 |
|
functhinclem3.2 |
|- ( ph -> E* n n e. ( ( F ` X ) J ( F ` Y ) ) ) |
7 |
|
simprl |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> x = X ) |
8 |
|
simprr |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> y = Y ) |
9 |
7 8
|
oveq12d |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( x H y ) = ( X H Y ) ) |
10 |
7
|
fveq2d |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( F ` x ) = ( F ` X ) ) |
11 |
8
|
fveq2d |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( F ` y ) = ( F ` Y ) ) |
12 |
10 11
|
oveq12d |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( ( F ` x ) J ( F ` y ) ) = ( ( F ` X ) J ( F ` Y ) ) ) |
13 |
9 12
|
xpeq12d |
|- ( ( ph /\ ( x = X /\ y = Y ) ) -> ( ( x H y ) X. ( ( F ` x ) J ( F ` y ) ) ) = ( ( X H Y ) X. ( ( F ` X ) J ( F ` Y ) ) ) ) |
14 |
|
ovex |
|- ( X H Y ) e. _V |
15 |
|
ovex |
|- ( ( F ` X ) J ( F ` Y ) ) e. _V |
16 |
14 15
|
xpex |
|- ( ( X H Y ) X. ( ( F ` X ) J ( F ` Y ) ) ) e. _V |
17 |
16
|
a1i |
|- ( ph -> ( ( X H Y ) X. ( ( F ` X ) J ( F ` Y ) ) ) e. _V ) |
18 |
4 13 1 2 17
|
ovmpod |
|- ( ph -> ( X G Y ) = ( ( X H Y ) X. ( ( F ` X ) J ( F ` Y ) ) ) ) |
19 |
|
eqid |
|- ( ( X H Y ) X. ( ( F ` X ) J ( F ` Y ) ) ) = ( ( X H Y ) X. ( ( F ` X ) J ( F ` Y ) ) ) |
20 |
19 5 6
|
mofeu |
|- ( ph -> ( ( X G Y ) : ( X H Y ) --> ( ( F ` X ) J ( F ` Y ) ) <-> ( X G Y ) = ( ( X H Y ) X. ( ( F ` X ) J ( F ` Y ) ) ) ) ) |
21 |
18 20
|
mpbird |
|- ( ph -> ( X G Y ) : ( X H Y ) --> ( ( F ` X ) J ( F ` Y ) ) ) |
22 |
21 3
|
ffvelrnd |
|- ( ph -> ( ( X G Y ) ` M ) e. ( ( F ` X ) J ( F ` Y ) ) ) |