Step |
Hyp |
Ref |
Expression |
1 |
|
functhinc.b |
|- B = ( Base ` D ) |
2 |
|
functhinc.c |
|- C = ( Base ` E ) |
3 |
|
functhinc.h |
|- H = ( Hom ` D ) |
4 |
|
functhinc.j |
|- J = ( Hom ` E ) |
5 |
|
functhinc.d |
|- ( ph -> D e. Cat ) |
6 |
|
functhinc.e |
|- ( ph -> E e. ThinCat ) |
7 |
|
functhinc.f |
|- ( ph -> F : B --> C ) |
8 |
|
functhinc.k |
|- K = ( x e. B , y e. B |-> ( ( x H y ) X. ( ( F ` x ) J ( F ` y ) ) ) ) |
9 |
|
functhinc.1 |
|- ( ph -> A. z e. B A. w e. B ( ( ( F ` z ) J ( F ` w ) ) = (/) -> ( z H w ) = (/) ) ) |
10 |
|
functhinclem4.1 |
|- .1. = ( Id ` D ) |
11 |
|
functhinclem4.i |
|- I = ( Id ` E ) |
12 |
|
functhinclem4.x |
|- .x. = ( comp ` D ) |
13 |
|
functhinclem4.o |
|- O = ( comp ` E ) |
14 |
6
|
ad2antrr |
|- ( ( ( ph /\ G = K ) /\ a e. B ) -> E e. ThinCat ) |
15 |
7
|
adantr |
|- ( ( ph /\ G = K ) -> F : B --> C ) |
16 |
15
|
ffvelrnda |
|- ( ( ( ph /\ G = K ) /\ a e. B ) -> ( F ` a ) e. C ) |
17 |
|
simpr |
|- ( ( ( ph /\ G = K ) /\ a e. B ) -> a e. B ) |
18 |
5
|
ad2antrr |
|- ( ( ( ph /\ G = K ) /\ a e. B ) -> D e. Cat ) |
19 |
1 3 10 18 17
|
catidcl |
|- ( ( ( ph /\ G = K ) /\ a e. B ) -> ( .1. ` a ) e. ( a H a ) ) |
20 |
|
simplr |
|- ( ( ( ph /\ G = K ) /\ a e. B ) -> G = K ) |
21 |
|
oveq1 |
|- ( x = v -> ( x H y ) = ( v H y ) ) |
22 |
|
fveq2 |
|- ( x = v -> ( F ` x ) = ( F ` v ) ) |
23 |
22
|
oveq1d |
|- ( x = v -> ( ( F ` x ) J ( F ` y ) ) = ( ( F ` v ) J ( F ` y ) ) ) |
24 |
21 23
|
xpeq12d |
|- ( x = v -> ( ( x H y ) X. ( ( F ` x ) J ( F ` y ) ) ) = ( ( v H y ) X. ( ( F ` v ) J ( F ` y ) ) ) ) |
25 |
|
oveq2 |
|- ( y = u -> ( v H y ) = ( v H u ) ) |
26 |
|
fveq2 |
|- ( y = u -> ( F ` y ) = ( F ` u ) ) |
27 |
26
|
oveq2d |
|- ( y = u -> ( ( F ` v ) J ( F ` y ) ) = ( ( F ` v ) J ( F ` u ) ) ) |
28 |
25 27
|
xpeq12d |
|- ( y = u -> ( ( v H y ) X. ( ( F ` v ) J ( F ` y ) ) ) = ( ( v H u ) X. ( ( F ` v ) J ( F ` u ) ) ) ) |
29 |
24 28
|
cbvmpov |
|- ( x e. B , y e. B |-> ( ( x H y ) X. ( ( F ` x ) J ( F ` y ) ) ) ) = ( v e. B , u e. B |-> ( ( v H u ) X. ( ( F ` v ) J ( F ` u ) ) ) ) |
30 |
8 29
|
eqtri |
|- K = ( v e. B , u e. B |-> ( ( v H u ) X. ( ( F ` v ) J ( F ` u ) ) ) ) |
31 |
20 30
|
eqtrdi |
|- ( ( ( ph /\ G = K ) /\ a e. B ) -> G = ( v e. B , u e. B |-> ( ( v H u ) X. ( ( F ` v ) J ( F ` u ) ) ) ) ) |
32 |
9
|
ad2antrr |
|- ( ( ( ph /\ G = K ) /\ a e. B ) -> A. z e. B A. w e. B ( ( ( F ` z ) J ( F ` w ) ) = (/) -> ( z H w ) = (/) ) ) |
33 |
17 17 32
|
functhinclem2 |
|- ( ( ( ph /\ G = K ) /\ a e. B ) -> ( ( ( F ` a ) J ( F ` a ) ) = (/) -> ( a H a ) = (/) ) ) |
34 |
14 16 16 2 4
|
thincmo |
|- ( ( ( ph /\ G = K ) /\ a e. B ) -> E* p p e. ( ( F ` a ) J ( F ` a ) ) ) |
35 |
17 17 19 31 33 34
|
functhinclem3 |
|- ( ( ( ph /\ G = K ) /\ a e. B ) -> ( ( a G a ) ` ( .1. ` a ) ) e. ( ( F ` a ) J ( F ` a ) ) ) |
36 |
14 2 4 16 11 35
|
thincid |
|- ( ( ( ph /\ G = K ) /\ a e. B ) -> ( ( a G a ) ` ( .1. ` a ) ) = ( I ` ( F ` a ) ) ) |
37 |
16
|
ad2antrr |
|- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> ( F ` a ) e. C ) |
38 |
7
|
ad4antr |
|- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> F : B --> C ) |
39 |
|
simplrr |
|- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> c e. B ) |
40 |
38 39
|
ffvelrnd |
|- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> ( F ` c ) e. C ) |
41 |
17
|
ad2antrr |
|- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> a e. B ) |
42 |
5
|
ad4antr |
|- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> D e. Cat ) |
43 |
|
simplrl |
|- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> b e. B ) |
44 |
|
simprl |
|- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> m e. ( a H b ) ) |
45 |
|
simprr |
|- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> n e. ( b H c ) ) |
46 |
1 3 12 42 41 43 39 44 45
|
catcocl |
|- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> ( n ( <. a , b >. .x. c ) m ) e. ( a H c ) ) |
47 |
31
|
ad2antrr |
|- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> G = ( v e. B , u e. B |-> ( ( v H u ) X. ( ( F ` v ) J ( F ` u ) ) ) ) ) |
48 |
9
|
ad4antr |
|- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> A. z e. B A. w e. B ( ( ( F ` z ) J ( F ` w ) ) = (/) -> ( z H w ) = (/) ) ) |
49 |
41 39 48
|
functhinclem2 |
|- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> ( ( ( F ` a ) J ( F ` c ) ) = (/) -> ( a H c ) = (/) ) ) |
50 |
6
|
ad4antr |
|- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> E e. ThinCat ) |
51 |
50 37 40 2 4
|
thincmo |
|- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> E* p p e. ( ( F ` a ) J ( F ` c ) ) ) |
52 |
41 39 46 47 49 51
|
functhinclem3 |
|- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> ( ( a G c ) ` ( n ( <. a , b >. .x. c ) m ) ) e. ( ( F ` a ) J ( F ` c ) ) ) |
53 |
14
|
thinccd |
|- ( ( ( ph /\ G = K ) /\ a e. B ) -> E e. Cat ) |
54 |
53
|
ad2antrr |
|- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> E e. Cat ) |
55 |
38 43
|
ffvelrnd |
|- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> ( F ` b ) e. C ) |
56 |
41 43 48
|
functhinclem2 |
|- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> ( ( ( F ` a ) J ( F ` b ) ) = (/) -> ( a H b ) = (/) ) ) |
57 |
50 37 55 2 4
|
thincmo |
|- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> E* p p e. ( ( F ` a ) J ( F ` b ) ) ) |
58 |
41 43 44 47 56 57
|
functhinclem3 |
|- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> ( ( a G b ) ` m ) e. ( ( F ` a ) J ( F ` b ) ) ) |
59 |
43 39 48
|
functhinclem2 |
|- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> ( ( ( F ` b ) J ( F ` c ) ) = (/) -> ( b H c ) = (/) ) ) |
60 |
50 55 40 2 4
|
thincmo |
|- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> E* p p e. ( ( F ` b ) J ( F ` c ) ) ) |
61 |
43 39 45 47 59 60
|
functhinclem3 |
|- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> ( ( b G c ) ` n ) e. ( ( F ` b ) J ( F ` c ) ) ) |
62 |
2 4 13 54 37 55 40 58 61
|
catcocl |
|- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> ( ( ( b G c ) ` n ) ( <. ( F ` a ) , ( F ` b ) >. O ( F ` c ) ) ( ( a G b ) ` m ) ) e. ( ( F ` a ) J ( F ` c ) ) ) |
63 |
37 40 52 62 2 4 50
|
thincmo2 |
|- ( ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) /\ ( m e. ( a H b ) /\ n e. ( b H c ) ) ) -> ( ( a G c ) ` ( n ( <. a , b >. .x. c ) m ) ) = ( ( ( b G c ) ` n ) ( <. ( F ` a ) , ( F ` b ) >. O ( F ` c ) ) ( ( a G b ) ` m ) ) ) |
64 |
63
|
ralrimivva |
|- ( ( ( ( ph /\ G = K ) /\ a e. B ) /\ ( b e. B /\ c e. B ) ) -> A. m e. ( a H b ) A. n e. ( b H c ) ( ( a G c ) ` ( n ( <. a , b >. .x. c ) m ) ) = ( ( ( b G c ) ` n ) ( <. ( F ` a ) , ( F ` b ) >. O ( F ` c ) ) ( ( a G b ) ` m ) ) ) |
65 |
64
|
ralrimivva |
|- ( ( ( ph /\ G = K ) /\ a e. B ) -> A. b e. B A. c e. B A. m e. ( a H b ) A. n e. ( b H c ) ( ( a G c ) ` ( n ( <. a , b >. .x. c ) m ) ) = ( ( ( b G c ) ` n ) ( <. ( F ` a ) , ( F ` b ) >. O ( F ` c ) ) ( ( a G b ) ` m ) ) ) |
66 |
36 65
|
jca |
|- ( ( ( ph /\ G = K ) /\ a e. B ) -> ( ( ( a G a ) ` ( .1. ` a ) ) = ( I ` ( F ` a ) ) /\ A. b e. B A. c e. B A. m e. ( a H b ) A. n e. ( b H c ) ( ( a G c ) ` ( n ( <. a , b >. .x. c ) m ) ) = ( ( ( b G c ) ` n ) ( <. ( F ` a ) , ( F ` b ) >. O ( F ` c ) ) ( ( a G b ) ` m ) ) ) ) |
67 |
66
|
ralrimiva |
|- ( ( ph /\ G = K ) -> A. a e. B ( ( ( a G a ) ` ( .1. ` a ) ) = ( I ` ( F ` a ) ) /\ A. b e. B A. c e. B A. m e. ( a H b ) A. n e. ( b H c ) ( ( a G c ) ` ( n ( <. a , b >. .x. c ) m ) ) = ( ( ( b G c ) ` n ) ( <. ( F ` a ) , ( F ` b ) >. O ( F ` c ) ) ( ( a G b ) ` m ) ) ) ) |