Step |
Hyp |
Ref |
Expression |
1 |
|
fundmen.1 |
|- F e. _V |
2 |
1
|
dmex |
|- dom F e. _V |
3 |
2
|
a1i |
|- ( Fun F -> dom F e. _V ) |
4 |
1
|
a1i |
|- ( Fun F -> F e. _V ) |
5 |
|
funfvop |
|- ( ( Fun F /\ x e. dom F ) -> <. x , ( F ` x ) >. e. F ) |
6 |
5
|
ex |
|- ( Fun F -> ( x e. dom F -> <. x , ( F ` x ) >. e. F ) ) |
7 |
|
funrel |
|- ( Fun F -> Rel F ) |
8 |
|
elreldm |
|- ( ( Rel F /\ y e. F ) -> |^| |^| y e. dom F ) |
9 |
8
|
ex |
|- ( Rel F -> ( y e. F -> |^| |^| y e. dom F ) ) |
10 |
7 9
|
syl |
|- ( Fun F -> ( y e. F -> |^| |^| y e. dom F ) ) |
11 |
|
df-rel |
|- ( Rel F <-> F C_ ( _V X. _V ) ) |
12 |
7 11
|
sylib |
|- ( Fun F -> F C_ ( _V X. _V ) ) |
13 |
12
|
sselda |
|- ( ( Fun F /\ y e. F ) -> y e. ( _V X. _V ) ) |
14 |
|
elvv |
|- ( y e. ( _V X. _V ) <-> E. z E. w y = <. z , w >. ) |
15 |
13 14
|
sylib |
|- ( ( Fun F /\ y e. F ) -> E. z E. w y = <. z , w >. ) |
16 |
|
inteq |
|- ( y = <. z , w >. -> |^| y = |^| <. z , w >. ) |
17 |
16
|
inteqd |
|- ( y = <. z , w >. -> |^| |^| y = |^| |^| <. z , w >. ) |
18 |
|
vex |
|- z e. _V |
19 |
|
vex |
|- w e. _V |
20 |
18 19
|
op1stb |
|- |^| |^| <. z , w >. = z |
21 |
17 20
|
eqtrdi |
|- ( y = <. z , w >. -> |^| |^| y = z ) |
22 |
|
eqeq1 |
|- ( x = |^| |^| y -> ( x = z <-> |^| |^| y = z ) ) |
23 |
21 22
|
syl5ibr |
|- ( x = |^| |^| y -> ( y = <. z , w >. -> x = z ) ) |
24 |
|
opeq1 |
|- ( x = z -> <. x , w >. = <. z , w >. ) |
25 |
23 24
|
syl6 |
|- ( x = |^| |^| y -> ( y = <. z , w >. -> <. x , w >. = <. z , w >. ) ) |
26 |
25
|
imp |
|- ( ( x = |^| |^| y /\ y = <. z , w >. ) -> <. x , w >. = <. z , w >. ) |
27 |
|
eqeq2 |
|- ( <. x , w >. = <. z , w >. -> ( y = <. x , w >. <-> y = <. z , w >. ) ) |
28 |
27
|
biimprcd |
|- ( y = <. z , w >. -> ( <. x , w >. = <. z , w >. -> y = <. x , w >. ) ) |
29 |
28
|
adantl |
|- ( ( x = |^| |^| y /\ y = <. z , w >. ) -> ( <. x , w >. = <. z , w >. -> y = <. x , w >. ) ) |
30 |
26 29
|
mpd |
|- ( ( x = |^| |^| y /\ y = <. z , w >. ) -> y = <. x , w >. ) |
31 |
30
|
ancoms |
|- ( ( y = <. z , w >. /\ x = |^| |^| y ) -> y = <. x , w >. ) |
32 |
31
|
adantl |
|- ( ( ( Fun F /\ y e. F ) /\ ( y = <. z , w >. /\ x = |^| |^| y ) ) -> y = <. x , w >. ) |
33 |
30
|
eleq1d |
|- ( ( x = |^| |^| y /\ y = <. z , w >. ) -> ( y e. F <-> <. x , w >. e. F ) ) |
34 |
33
|
adantl |
|- ( ( Fun F /\ ( x = |^| |^| y /\ y = <. z , w >. ) ) -> ( y e. F <-> <. x , w >. e. F ) ) |
35 |
|
funopfv |
|- ( Fun F -> ( <. x , w >. e. F -> ( F ` x ) = w ) ) |
36 |
35
|
adantr |
|- ( ( Fun F /\ ( x = |^| |^| y /\ y = <. z , w >. ) ) -> ( <. x , w >. e. F -> ( F ` x ) = w ) ) |
37 |
34 36
|
sylbid |
|- ( ( Fun F /\ ( x = |^| |^| y /\ y = <. z , w >. ) ) -> ( y e. F -> ( F ` x ) = w ) ) |
38 |
37
|
exp32 |
|- ( Fun F -> ( x = |^| |^| y -> ( y = <. z , w >. -> ( y e. F -> ( F ` x ) = w ) ) ) ) |
39 |
38
|
com24 |
|- ( Fun F -> ( y e. F -> ( y = <. z , w >. -> ( x = |^| |^| y -> ( F ` x ) = w ) ) ) ) |
40 |
39
|
imp43 |
|- ( ( ( Fun F /\ y e. F ) /\ ( y = <. z , w >. /\ x = |^| |^| y ) ) -> ( F ` x ) = w ) |
41 |
40
|
opeq2d |
|- ( ( ( Fun F /\ y e. F ) /\ ( y = <. z , w >. /\ x = |^| |^| y ) ) -> <. x , ( F ` x ) >. = <. x , w >. ) |
42 |
32 41
|
eqtr4d |
|- ( ( ( Fun F /\ y e. F ) /\ ( y = <. z , w >. /\ x = |^| |^| y ) ) -> y = <. x , ( F ` x ) >. ) |
43 |
42
|
exp32 |
|- ( ( Fun F /\ y e. F ) -> ( y = <. z , w >. -> ( x = |^| |^| y -> y = <. x , ( F ` x ) >. ) ) ) |
44 |
43
|
exlimdvv |
|- ( ( Fun F /\ y e. F ) -> ( E. z E. w y = <. z , w >. -> ( x = |^| |^| y -> y = <. x , ( F ` x ) >. ) ) ) |
45 |
15 44
|
mpd |
|- ( ( Fun F /\ y e. F ) -> ( x = |^| |^| y -> y = <. x , ( F ` x ) >. ) ) |
46 |
45
|
adantrl |
|- ( ( Fun F /\ ( x e. dom F /\ y e. F ) ) -> ( x = |^| |^| y -> y = <. x , ( F ` x ) >. ) ) |
47 |
|
inteq |
|- ( y = <. x , ( F ` x ) >. -> |^| y = |^| <. x , ( F ` x ) >. ) |
48 |
47
|
inteqd |
|- ( y = <. x , ( F ` x ) >. -> |^| |^| y = |^| |^| <. x , ( F ` x ) >. ) |
49 |
|
vex |
|- x e. _V |
50 |
|
fvex |
|- ( F ` x ) e. _V |
51 |
49 50
|
op1stb |
|- |^| |^| <. x , ( F ` x ) >. = x |
52 |
48 51
|
eqtr2di |
|- ( y = <. x , ( F ` x ) >. -> x = |^| |^| y ) |
53 |
46 52
|
impbid1 |
|- ( ( Fun F /\ ( x e. dom F /\ y e. F ) ) -> ( x = |^| |^| y <-> y = <. x , ( F ` x ) >. ) ) |
54 |
53
|
ex |
|- ( Fun F -> ( ( x e. dom F /\ y e. F ) -> ( x = |^| |^| y <-> y = <. x , ( F ` x ) >. ) ) ) |
55 |
3 4 6 10 54
|
en3d |
|- ( Fun F -> dom F ~~ F ) |