Metamath Proof Explorer


Theorem fundmge2nop

Description: A function with a domain containing (at least) two different elements is not an ordered pair. (Contributed by AV, 12-Oct-2020) (Proof shortened by AV, 9-Jun-2021)

Ref Expression
Assertion fundmge2nop
|- ( ( Fun G /\ 2 <_ ( # ` dom G ) ) -> -. G e. ( _V X. _V ) )

Proof

Step Hyp Ref Expression
1 fundif
 |-  ( Fun G -> Fun ( G \ { (/) } ) )
2 fundmge2nop0
 |-  ( ( Fun ( G \ { (/) } ) /\ 2 <_ ( # ` dom G ) ) -> -. G e. ( _V X. _V ) )
3 1 2 sylan
 |-  ( ( Fun G /\ 2 <_ ( # ` dom G ) ) -> -. G e. ( _V X. _V ) )