| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvelrn |  |-  ( ( Fun F /\ A e. dom F ) -> ( F ` A ) e. ran F ) | 
						
							| 2 | 1 | ex |  |-  ( Fun F -> ( A e. dom F -> ( F ` A ) e. ran F ) ) | 
						
							| 3 | 2 | adantr |  |-  ( ( Fun F /\ ( F ` A ) = (/) ) -> ( A e. dom F -> ( F ` A ) e. ran F ) ) | 
						
							| 4 |  | eleq1 |  |-  ( ( F ` A ) = (/) -> ( ( F ` A ) e. ran F <-> (/) e. ran F ) ) | 
						
							| 5 | 4 | adantl |  |-  ( ( Fun F /\ ( F ` A ) = (/) ) -> ( ( F ` A ) e. ran F <-> (/) e. ran F ) ) | 
						
							| 6 | 3 5 | sylibd |  |-  ( ( Fun F /\ ( F ` A ) = (/) ) -> ( A e. dom F -> (/) e. ran F ) ) | 
						
							| 7 | 6 | con3d |  |-  ( ( Fun F /\ ( F ` A ) = (/) ) -> ( -. (/) e. ran F -> -. A e. dom F ) ) | 
						
							| 8 | 7 | impancom |  |-  ( ( Fun F /\ -. (/) e. ran F ) -> ( ( F ` A ) = (/) -> -. A e. dom F ) ) | 
						
							| 9 |  | ndmfv |  |-  ( -. A e. dom F -> ( F ` A ) = (/) ) | 
						
							| 10 | 8 9 | impbid1 |  |-  ( ( Fun F /\ -. (/) e. ran F ) -> ( ( F ` A ) = (/) <-> -. A e. dom F ) ) | 
						
							| 11 | 10 | necon2abid |  |-  ( ( Fun F /\ -. (/) e. ran F ) -> ( A e. dom F <-> ( F ` A ) =/= (/) ) ) |