Step |
Hyp |
Ref |
Expression |
1 |
|
funrel |
|- ( Fun A -> Rel A ) |
2 |
|
releldmdifi |
|- ( ( Rel A /\ B C_ A ) -> ( C e. ( dom A \ dom B ) -> E. x e. ( A \ B ) ( 1st ` x ) = C ) ) |
3 |
1 2
|
sylan |
|- ( ( Fun A /\ B C_ A ) -> ( C e. ( dom A \ dom B ) -> E. x e. ( A \ B ) ( 1st ` x ) = C ) ) |
4 |
|
eldif |
|- ( x e. ( A \ B ) <-> ( x e. A /\ -. x e. B ) ) |
5 |
|
1stdm |
|- ( ( Rel A /\ x e. A ) -> ( 1st ` x ) e. dom A ) |
6 |
5
|
ex |
|- ( Rel A -> ( x e. A -> ( 1st ` x ) e. dom A ) ) |
7 |
1 6
|
syl |
|- ( Fun A -> ( x e. A -> ( 1st ` x ) e. dom A ) ) |
8 |
7
|
adantr |
|- ( ( Fun A /\ B C_ A ) -> ( x e. A -> ( 1st ` x ) e. dom A ) ) |
9 |
8
|
com12 |
|- ( x e. A -> ( ( Fun A /\ B C_ A ) -> ( 1st ` x ) e. dom A ) ) |
10 |
9
|
adantr |
|- ( ( x e. A /\ -. x e. B ) -> ( ( Fun A /\ B C_ A ) -> ( 1st ` x ) e. dom A ) ) |
11 |
10
|
impcom |
|- ( ( ( Fun A /\ B C_ A ) /\ ( x e. A /\ -. x e. B ) ) -> ( 1st ` x ) e. dom A ) |
12 |
|
funelss |
|- ( ( Fun A /\ B C_ A /\ x e. A ) -> ( ( 1st ` x ) e. dom B -> x e. B ) ) |
13 |
12
|
3expa |
|- ( ( ( Fun A /\ B C_ A ) /\ x e. A ) -> ( ( 1st ` x ) e. dom B -> x e. B ) ) |
14 |
13
|
con3d |
|- ( ( ( Fun A /\ B C_ A ) /\ x e. A ) -> ( -. x e. B -> -. ( 1st ` x ) e. dom B ) ) |
15 |
14
|
impr |
|- ( ( ( Fun A /\ B C_ A ) /\ ( x e. A /\ -. x e. B ) ) -> -. ( 1st ` x ) e. dom B ) |
16 |
11 15
|
eldifd |
|- ( ( ( Fun A /\ B C_ A ) /\ ( x e. A /\ -. x e. B ) ) -> ( 1st ` x ) e. ( dom A \ dom B ) ) |
17 |
16
|
3adant3 |
|- ( ( ( Fun A /\ B C_ A ) /\ ( x e. A /\ -. x e. B ) /\ ( 1st ` x ) = C ) -> ( 1st ` x ) e. ( dom A \ dom B ) ) |
18 |
|
eleq1 |
|- ( ( 1st ` x ) = C -> ( ( 1st ` x ) e. ( dom A \ dom B ) <-> C e. ( dom A \ dom B ) ) ) |
19 |
18
|
3ad2ant3 |
|- ( ( ( Fun A /\ B C_ A ) /\ ( x e. A /\ -. x e. B ) /\ ( 1st ` x ) = C ) -> ( ( 1st ` x ) e. ( dom A \ dom B ) <-> C e. ( dom A \ dom B ) ) ) |
20 |
17 19
|
mpbid |
|- ( ( ( Fun A /\ B C_ A ) /\ ( x e. A /\ -. x e. B ) /\ ( 1st ` x ) = C ) -> C e. ( dom A \ dom B ) ) |
21 |
20
|
3exp |
|- ( ( Fun A /\ B C_ A ) -> ( ( x e. A /\ -. x e. B ) -> ( ( 1st ` x ) = C -> C e. ( dom A \ dom B ) ) ) ) |
22 |
4 21
|
syl5bi |
|- ( ( Fun A /\ B C_ A ) -> ( x e. ( A \ B ) -> ( ( 1st ` x ) = C -> C e. ( dom A \ dom B ) ) ) ) |
23 |
22
|
rexlimdv |
|- ( ( Fun A /\ B C_ A ) -> ( E. x e. ( A \ B ) ( 1st ` x ) = C -> C e. ( dom A \ dom B ) ) ) |
24 |
3 23
|
impbid |
|- ( ( Fun A /\ B C_ A ) -> ( C e. ( dom A \ dom B ) <-> E. x e. ( A \ B ) ( 1st ` x ) = C ) ) |