Metamath Proof Explorer


Theorem funeu2

Description: There is exactly one value of a function. (Contributed by NM, 3-Aug-1994)

Ref Expression
Assertion funeu2
|- ( ( Fun F /\ <. A , B >. e. F ) -> E! y <. A , y >. e. F )

Proof

Step Hyp Ref Expression
1 df-br
 |-  ( A F B <-> <. A , B >. e. F )
2 funeu
 |-  ( ( Fun F /\ A F B ) -> E! y A F y )
3 df-br
 |-  ( A F y <-> <. A , y >. e. F )
4 3 eubii
 |-  ( E! y A F y <-> E! y <. A , y >. e. F )
5 2 4 sylib
 |-  ( ( Fun F /\ A F B ) -> E! y <. A , y >. e. F )
6 1 5 sylan2br
 |-  ( ( Fun F /\ <. A , B >. e. F ) -> E! y <. A , y >. e. F )