Description: A class is a function if and only if it is a function on its domain. (Contributed by NM, 13-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funfn | |- ( Fun A <-> A Fn dom A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- dom A = dom A |
|
| 2 | 1 | biantru | |- ( Fun A <-> ( Fun A /\ dom A = dom A ) ) |
| 3 | df-fn | |- ( A Fn dom A <-> ( Fun A /\ dom A = dom A ) ) |
|
| 4 | 2 3 | bitr4i | |- ( Fun A <-> A Fn dom A ) |