Description: A class is a function if and only if it is a function on its domain. (Contributed by NM, 13-Aug-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | funfn | |- ( Fun A <-> A Fn dom A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |- dom A = dom A |
|
2 | 1 | biantru | |- ( Fun A <-> ( Fun A /\ dom A = dom A ) ) |
3 | df-fn | |- ( A Fn dom A <-> ( Fun A /\ dom A = dom A ) ) |
|
4 | 2 3 | bitr4i | |- ( Fun A <-> A Fn dom A ) |