Description: Inference to convert a function and domain antecedent. (Contributed by NM, 22-Apr-2004)
Ref | Expression | ||
---|---|---|---|
Hypothesis | funfni.1 | |- ( ( Fun F /\ B e. dom F ) -> ph ) |
|
Assertion | funfni | |- ( ( F Fn A /\ B e. A ) -> ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfni.1 | |- ( ( Fun F /\ B e. dom F ) -> ph ) |
|
2 | fnfun | |- ( F Fn A -> Fun F ) |
|
3 | fndm | |- ( F Fn A -> dom F = A ) |
|
4 | 3 | eleq2d | |- ( F Fn A -> ( B e. dom F <-> B e. A ) ) |
5 | 4 | biimpar | |- ( ( F Fn A /\ B e. A ) -> B e. dom F ) |
6 | 2 5 1 | syl2an2r | |- ( ( F Fn A /\ B e. A ) -> ph ) |