Metamath Proof Explorer


Theorem funfni

Description: Inference to convert a function and domain antecedent. (Contributed by NM, 22-Apr-2004)

Ref Expression
Hypothesis funfni.1
|- ( ( Fun F /\ B e. dom F ) -> ph )
Assertion funfni
|- ( ( F Fn A /\ B e. A ) -> ph )

Proof

Step Hyp Ref Expression
1 funfni.1
 |-  ( ( Fun F /\ B e. dom F ) -> ph )
2 fnfun
 |-  ( F Fn A -> Fun F )
3 fndm
 |-  ( F Fn A -> dom F = A )
4 3 eleq2d
 |-  ( F Fn A -> ( B e. dom F <-> B e. A ) )
5 4 biimpar
 |-  ( ( F Fn A /\ B e. A ) -> B e. dom F )
6 2 5 1 syl2an2r
 |-  ( ( F Fn A /\ B e. A ) -> ph )