Step |
Hyp |
Ref |
Expression |
1 |
|
fvex |
|- ( F ` A ) e. _V |
2 |
1
|
unisn |
|- U. { ( F ` A ) } = ( F ` A ) |
3 |
|
eqid |
|- dom F = dom F |
4 |
|
df-fn |
|- ( F Fn dom F <-> ( Fun F /\ dom F = dom F ) ) |
5 |
3 4
|
mpbiran2 |
|- ( F Fn dom F <-> Fun F ) |
6 |
|
fnsnfv |
|- ( ( F Fn dom F /\ A e. dom F ) -> { ( F ` A ) } = ( F " { A } ) ) |
7 |
5 6
|
sylanbr |
|- ( ( Fun F /\ A e. dom F ) -> { ( F ` A ) } = ( F " { A } ) ) |
8 |
7
|
unieqd |
|- ( ( Fun F /\ A e. dom F ) -> U. { ( F ` A ) } = U. ( F " { A } ) ) |
9 |
2 8
|
eqtr3id |
|- ( ( Fun F /\ A e. dom F ) -> ( F ` A ) = U. ( F " { A } ) ) |
10 |
9
|
ex |
|- ( Fun F -> ( A e. dom F -> ( F ` A ) = U. ( F " { A } ) ) ) |
11 |
|
ndmfv |
|- ( -. A e. dom F -> ( F ` A ) = (/) ) |
12 |
|
ndmima |
|- ( -. A e. dom F -> ( F " { A } ) = (/) ) |
13 |
12
|
unieqd |
|- ( -. A e. dom F -> U. ( F " { A } ) = U. (/) ) |
14 |
|
uni0 |
|- U. (/) = (/) |
15 |
13 14
|
eqtrdi |
|- ( -. A e. dom F -> U. ( F " { A } ) = (/) ) |
16 |
11 15
|
eqtr4d |
|- ( -. A e. dom F -> ( F ` A ) = U. ( F " { A } ) ) |
17 |
10 16
|
pm2.61d1 |
|- ( Fun F -> ( F ` A ) = U. ( F " { A } ) ) |