Metamath Proof Explorer


Theorem funfv2

Description: The value of a function. Definition of function value in Enderton p. 43. (Contributed by NM, 22-May-1998)

Ref Expression
Assertion funfv2
|- ( Fun F -> ( F ` A ) = U. { y | A F y } )

Proof

Step Hyp Ref Expression
1 funfv
 |-  ( Fun F -> ( F ` A ) = U. ( F " { A } ) )
2 funrel
 |-  ( Fun F -> Rel F )
3 relimasn
 |-  ( Rel F -> ( F " { A } ) = { y | A F y } )
4 2 3 syl
 |-  ( Fun F -> ( F " { A } ) = { y | A F y } )
5 4 unieqd
 |-  ( Fun F -> U. ( F " { A } ) = U. { y | A F y } )
6 1 5 eqtrd
 |-  ( Fun F -> ( F ` A ) = U. { y | A F y } )