Metamath Proof Explorer


Theorem funfv2f

Description: The value of a function. Version of funfv2 using a bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 19-Feb-2006)

Ref Expression
Hypotheses funfv2f.1
|- F/_ y A
funfv2f.2
|- F/_ y F
Assertion funfv2f
|- ( Fun F -> ( F ` A ) = U. { y | A F y } )

Proof

Step Hyp Ref Expression
1 funfv2f.1
 |-  F/_ y A
2 funfv2f.2
 |-  F/_ y F
3 funfv2
 |-  ( Fun F -> ( F ` A ) = U. { w | A F w } )
4 nfcv
 |-  F/_ y w
5 1 2 4 nfbr
 |-  F/ y A F w
6 nfv
 |-  F/ w A F y
7 breq2
 |-  ( w = y -> ( A F w <-> A F y ) )
8 5 6 7 cbvabw
 |-  { w | A F w } = { y | A F y }
9 8 unieqi
 |-  U. { w | A F w } = U. { y | A F y }
10 3 9 eqtrdi
 |-  ( Fun F -> ( F ` A ) = U. { y | A F y } )