Description: Two ways to say that A is in the domain of F . (Contributed by Mario Carneiro, 1-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funfvbrb | |- ( Fun F -> ( A e. dom F <-> A F ( F ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfvop | |- ( ( Fun F /\ A e. dom F ) -> <. A , ( F ` A ) >. e. F ) |
|
| 2 | df-br | |- ( A F ( F ` A ) <-> <. A , ( F ` A ) >. e. F ) |
|
| 3 | 1 2 | sylibr | |- ( ( Fun F /\ A e. dom F ) -> A F ( F ` A ) ) |
| 4 | funrel | |- ( Fun F -> Rel F ) |
|
| 5 | releldm | |- ( ( Rel F /\ A F ( F ` A ) ) -> A e. dom F ) |
|
| 6 | 4 5 | sylan | |- ( ( Fun F /\ A F ( F ` A ) ) -> A e. dom F ) |
| 7 | 3 6 | impbida | |- ( Fun F -> ( A e. dom F <-> A F ( F ` A ) ) ) |