Step |
Hyp |
Ref |
Expression |
1 |
|
dmres |
|- dom ( F |` A ) = ( A i^i dom F ) |
2 |
1
|
elin2 |
|- ( B e. dom ( F |` A ) <-> ( B e. A /\ B e. dom F ) ) |
3 |
|
funres |
|- ( Fun F -> Fun ( F |` A ) ) |
4 |
|
fvelrn |
|- ( ( Fun ( F |` A ) /\ B e. dom ( F |` A ) ) -> ( ( F |` A ) ` B ) e. ran ( F |` A ) ) |
5 |
3 4
|
sylan |
|- ( ( Fun F /\ B e. dom ( F |` A ) ) -> ( ( F |` A ) ` B ) e. ran ( F |` A ) ) |
6 |
|
df-ima |
|- ( F " A ) = ran ( F |` A ) |
7 |
6
|
eleq2i |
|- ( ( F ` B ) e. ( F " A ) <-> ( F ` B ) e. ran ( F |` A ) ) |
8 |
|
fvres |
|- ( B e. A -> ( ( F |` A ) ` B ) = ( F ` B ) ) |
9 |
8
|
eleq1d |
|- ( B e. A -> ( ( ( F |` A ) ` B ) e. ran ( F |` A ) <-> ( F ` B ) e. ran ( F |` A ) ) ) |
10 |
7 9
|
bitr4id |
|- ( B e. A -> ( ( F ` B ) e. ( F " A ) <-> ( ( F |` A ) ` B ) e. ran ( F |` A ) ) ) |
11 |
5 10
|
syl5ibrcom |
|- ( ( Fun F /\ B e. dom ( F |` A ) ) -> ( B e. A -> ( F ` B ) e. ( F " A ) ) ) |
12 |
11
|
ex |
|- ( Fun F -> ( B e. dom ( F |` A ) -> ( B e. A -> ( F ` B ) e. ( F " A ) ) ) ) |
13 |
2 12
|
syl5bir |
|- ( Fun F -> ( ( B e. A /\ B e. dom F ) -> ( B e. A -> ( F ` B ) e. ( F " A ) ) ) ) |
14 |
13
|
expd |
|- ( Fun F -> ( B e. A -> ( B e. dom F -> ( B e. A -> ( F ` B ) e. ( F " A ) ) ) ) ) |
15 |
14
|
com12 |
|- ( B e. A -> ( Fun F -> ( B e. dom F -> ( B e. A -> ( F ` B ) e. ( F " A ) ) ) ) ) |
16 |
15
|
impd |
|- ( B e. A -> ( ( Fun F /\ B e. dom F ) -> ( B e. A -> ( F ` B ) e. ( F " A ) ) ) ) |
17 |
16
|
pm2.43b |
|- ( ( Fun F /\ B e. dom F ) -> ( B e. A -> ( F ` B ) e. ( F " A ) ) ) |