Metamath Proof Explorer


Theorem funfvima2d

Description: A function's value in a preimage belongs to the image. (Contributed by Stanislas Polu, 9-Mar-2020) (Revised by AV, 23-Mar-2024)

Ref Expression
Hypothesis funfvima2d.1
|- ( ph -> F : A --> B )
Assertion funfvima2d
|- ( ( ph /\ X e. A ) -> ( F ` X ) e. ( F " A ) )

Proof

Step Hyp Ref Expression
1 funfvima2d.1
 |-  ( ph -> F : A --> B )
2 1 ffund
 |-  ( ph -> Fun F )
3 ssidd
 |-  ( ph -> A C_ A )
4 1 fdmd
 |-  ( ph -> dom F = A )
5 3 4 sseqtrrd
 |-  ( ph -> A C_ dom F )
6 funfvima2
 |-  ( ( Fun F /\ A C_ dom F ) -> ( X e. A -> ( F ` X ) e. ( F " A ) ) )
7 2 5 6 syl2anc
 |-  ( ph -> ( X e. A -> ( F ` X ) e. ( F " A ) ) )
8 7 imp
 |-  ( ( ph /\ X e. A ) -> ( F ` X ) e. ( F " A ) )