Metamath Proof Explorer


Theorem funi

Description: The identity relation is a function. Part of Theorem 10.4 of Quine p. 65. See also idfn . (Contributed by NM, 30-Apr-1998)

Ref Expression
Assertion funi
|- Fun _I

Proof

Step Hyp Ref Expression
1 reli
 |-  Rel _I
2 relcnv
 |-  Rel `' _I
3 coi2
 |-  ( Rel `' _I -> ( _I o. `' _I ) = `' _I )
4 2 3 ax-mp
 |-  ( _I o. `' _I ) = `' _I
5 cnvi
 |-  `' _I = _I
6 4 5 eqtri
 |-  ( _I o. `' _I ) = _I
7 6 eqimssi
 |-  ( _I o. `' _I ) C_ _I
8 df-fun
 |-  ( Fun _I <-> ( Rel _I /\ ( _I o. `' _I ) C_ _I ) )
9 1 7 8 mpbir2an
 |-  Fun _I