Step |
Hyp |
Ref |
Expression |
1 |
|
df-ima |
|- ( F " ( `' F " A ) ) = ran ( F |` ( `' F " A ) ) |
2 |
|
funcnvres2 |
|- ( Fun F -> `' ( `' F |` A ) = ( F |` ( `' F " A ) ) ) |
3 |
2
|
rneqd |
|- ( Fun F -> ran `' ( `' F |` A ) = ran ( F |` ( `' F " A ) ) ) |
4 |
1 3
|
eqtr4id |
|- ( Fun F -> ( F " ( `' F " A ) ) = ran `' ( `' F |` A ) ) |
5 |
|
df-rn |
|- ran F = dom `' F |
6 |
5
|
ineq2i |
|- ( A i^i ran F ) = ( A i^i dom `' F ) |
7 |
|
dmres |
|- dom ( `' F |` A ) = ( A i^i dom `' F ) |
8 |
|
dfdm4 |
|- dom ( `' F |` A ) = ran `' ( `' F |` A ) |
9 |
6 7 8
|
3eqtr2ri |
|- ran `' ( `' F |` A ) = ( A i^i ran F ) |
10 |
4 9
|
eqtrdi |
|- ( Fun F -> ( F " ( `' F " A ) ) = ( A i^i ran F ) ) |