Metamath Proof Explorer


Theorem funimaexg

Description: Axiom of Replacement using abbreviations. Axiom 39(vi) of Quine p. 284. Compare Exercise 9 of TakeutiZaring p. 29. (Contributed by NM, 10-Sep-2006) Shorten proof and avoid ax-10 , ax-12 . (Revised by SN, 19-Dec-2024)

Ref Expression
Assertion funimaexg
|- ( ( Fun A /\ B e. C ) -> ( A " B ) e. _V )

Proof

Step Hyp Ref Expression
1 dffun6
 |-  ( Fun A <-> ( Rel A /\ A. x E* y x A y ) )
2 1 simprbi
 |-  ( Fun A -> A. x E* y x A y )
3 dfima2
 |-  ( A " B ) = { y | E. x e. B x A y }
4 axrep6g
 |-  ( ( B e. C /\ A. x E* y x A y ) -> { y | E. x e. B x A y } e. _V )
5 3 4 eqeltrid
 |-  ( ( B e. C /\ A. x E* y x A y ) -> ( A " B ) e. _V )
6 2 5 sylan2
 |-  ( ( B e. C /\ Fun A ) -> ( A " B ) e. _V )
7 6 ancoms
 |-  ( ( Fun A /\ B e. C ) -> ( A " B ) e. _V )