Step |
Hyp |
Ref |
Expression |
1 |
|
funimass4 |
|- ( ( Fun F /\ A C_ dom F ) -> ( ( F " A ) C_ B <-> A. x e. A ( F ` x ) e. B ) ) |
2 |
|
ssel |
|- ( A C_ dom F -> ( x e. A -> x e. dom F ) ) |
3 |
|
fvimacnv |
|- ( ( Fun F /\ x e. dom F ) -> ( ( F ` x ) e. B <-> x e. ( `' F " B ) ) ) |
4 |
3
|
ex |
|- ( Fun F -> ( x e. dom F -> ( ( F ` x ) e. B <-> x e. ( `' F " B ) ) ) ) |
5 |
2 4
|
syl9r |
|- ( Fun F -> ( A C_ dom F -> ( x e. A -> ( ( F ` x ) e. B <-> x e. ( `' F " B ) ) ) ) ) |
6 |
5
|
imp31 |
|- ( ( ( Fun F /\ A C_ dom F ) /\ x e. A ) -> ( ( F ` x ) e. B <-> x e. ( `' F " B ) ) ) |
7 |
6
|
ralbidva |
|- ( ( Fun F /\ A C_ dom F ) -> ( A. x e. A ( F ` x ) e. B <-> A. x e. A x e. ( `' F " B ) ) ) |
8 |
1 7
|
bitrd |
|- ( ( Fun F /\ A C_ dom F ) -> ( ( F " A ) C_ B <-> A. x e. A x e. ( `' F " B ) ) ) |
9 |
|
dfss3 |
|- ( A C_ ( `' F " B ) <-> A. x e. A x e. ( `' F " B ) ) |
10 |
8 9
|
bitr4di |
|- ( ( Fun F /\ A C_ dom F ) -> ( ( F " A ) C_ B <-> A C_ ( `' F " B ) ) ) |