| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							funimass4 | 
							 |-  ( ( Fun F /\ A C_ dom F ) -> ( ( F " A ) C_ B <-> A. x e. A ( F ` x ) e. B ) )  | 
						
						
							| 2 | 
							
								
							 | 
							ssel | 
							 |-  ( A C_ dom F -> ( x e. A -> x e. dom F ) )  | 
						
						
							| 3 | 
							
								
							 | 
							fvimacnv | 
							 |-  ( ( Fun F /\ x e. dom F ) -> ( ( F ` x ) e. B <-> x e. ( `' F " B ) ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							ex | 
							 |-  ( Fun F -> ( x e. dom F -> ( ( F ` x ) e. B <-> x e. ( `' F " B ) ) ) )  | 
						
						
							| 5 | 
							
								2 4
							 | 
							syl9r | 
							 |-  ( Fun F -> ( A C_ dom F -> ( x e. A -> ( ( F ` x ) e. B <-> x e. ( `' F " B ) ) ) ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							imp31 | 
							 |-  ( ( ( Fun F /\ A C_ dom F ) /\ x e. A ) -> ( ( F ` x ) e. B <-> x e. ( `' F " B ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							ralbidva | 
							 |-  ( ( Fun F /\ A C_ dom F ) -> ( A. x e. A ( F ` x ) e. B <-> A. x e. A x e. ( `' F " B ) ) )  | 
						
						
							| 8 | 
							
								1 7
							 | 
							bitrd | 
							 |-  ( ( Fun F /\ A C_ dom F ) -> ( ( F " A ) C_ B <-> A. x e. A x e. ( `' F " B ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							dfss3 | 
							 |-  ( A C_ ( `' F " B ) <-> A. x e. A x e. ( `' F " B ) )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							bitr4di | 
							 |-  ( ( Fun F /\ A C_ dom F ) -> ( ( F " A ) C_ B <-> A C_ ( `' F " B ) ) )  |