Step |
Hyp |
Ref |
Expression |
1 |
|
funimass4f.1 |
|- F/_ x A |
2 |
|
funimass4f.2 |
|- F/_ x B |
3 |
|
funimass4f.3 |
|- F/_ x F |
4 |
3
|
nffun |
|- F/ x Fun F |
5 |
3
|
nfdm |
|- F/_ x dom F |
6 |
1 5
|
nfss |
|- F/ x A C_ dom F |
7 |
4 6
|
nfan |
|- F/ x ( Fun F /\ A C_ dom F ) |
8 |
3 1
|
nfima |
|- F/_ x ( F " A ) |
9 |
8 2
|
nfss |
|- F/ x ( F " A ) C_ B |
10 |
7 9
|
nfan |
|- F/ x ( ( Fun F /\ A C_ dom F ) /\ ( F " A ) C_ B ) |
11 |
|
funfvima2 |
|- ( ( Fun F /\ A C_ dom F ) -> ( x e. A -> ( F ` x ) e. ( F " A ) ) ) |
12 |
|
ssel |
|- ( ( F " A ) C_ B -> ( ( F ` x ) e. ( F " A ) -> ( F ` x ) e. B ) ) |
13 |
11 12
|
sylan9 |
|- ( ( ( Fun F /\ A C_ dom F ) /\ ( F " A ) C_ B ) -> ( x e. A -> ( F ` x ) e. B ) ) |
14 |
10 13
|
ralrimi |
|- ( ( ( Fun F /\ A C_ dom F ) /\ ( F " A ) C_ B ) -> A. x e. A ( F ` x ) e. B ) |
15 |
1 3
|
dfimafnf |
|- ( ( Fun F /\ A C_ dom F ) -> ( F " A ) = { y | E. x e. A y = ( F ` x ) } ) |
16 |
15
|
adantr |
|- ( ( ( Fun F /\ A C_ dom F ) /\ A. x e. A ( F ` x ) e. B ) -> ( F " A ) = { y | E. x e. A y = ( F ` x ) } ) |
17 |
2
|
abrexss |
|- ( A. x e. A ( F ` x ) e. B -> { y | E. x e. A y = ( F ` x ) } C_ B ) |
18 |
17
|
adantl |
|- ( ( ( Fun F /\ A C_ dom F ) /\ A. x e. A ( F ` x ) e. B ) -> { y | E. x e. A y = ( F ` x ) } C_ B ) |
19 |
16 18
|
eqsstrd |
|- ( ( ( Fun F /\ A C_ dom F ) /\ A. x e. A ( F ` x ) e. B ) -> ( F " A ) C_ B ) |
20 |
14 19
|
impbida |
|- ( ( Fun F /\ A C_ dom F ) -> ( ( F " A ) C_ B <-> A. x e. A ( F ` x ) e. B ) ) |