Metamath Proof Explorer


Theorem funimass5

Description: A subclass of a preimage in terms of function values. (Contributed by NM, 15-May-2007)

Ref Expression
Assertion funimass5
|- ( ( Fun F /\ A C_ dom F ) -> ( A C_ ( `' F " B ) <-> A. x e. A ( F ` x ) e. B ) )

Proof

Step Hyp Ref Expression
1 funimass3
 |-  ( ( Fun F /\ A C_ dom F ) -> ( ( F " A ) C_ B <-> A C_ ( `' F " B ) ) )
2 funimass4
 |-  ( ( Fun F /\ A C_ dom F ) -> ( ( F " A ) C_ B <-> A. x e. A ( F ` x ) e. B ) )
3 1 2 bitr3d
 |-  ( ( Fun F /\ A C_ dom F ) -> ( A C_ ( `' F " B ) <-> A. x e. A ( F ` x ) e. B ) )