| Step | Hyp | Ref | Expression | 
						
							| 1 |  | funimassd.1 |  |-  F/ x ph | 
						
							| 2 |  | funimassd.2 |  |-  ( ph -> Fun F ) | 
						
							| 3 |  | funimassd.3 |  |-  ( ( ph /\ x e. A ) -> ( F ` x ) e. B ) | 
						
							| 4 |  | fvelima |  |-  ( ( Fun F /\ y e. ( F " A ) ) -> E. x e. A ( F ` x ) = y ) | 
						
							| 5 | 2 4 | sylan |  |-  ( ( ph /\ y e. ( F " A ) ) -> E. x e. A ( F ` x ) = y ) | 
						
							| 6 |  | nfv |  |-  F/ x y e. ( F " A ) | 
						
							| 7 | 1 6 | nfan |  |-  F/ x ( ph /\ y e. ( F " A ) ) | 
						
							| 8 |  | nfv |  |-  F/ x y e. B | 
						
							| 9 |  | id |  |-  ( ( F ` x ) = y -> ( F ` x ) = y ) | 
						
							| 10 | 9 | eqcomd |  |-  ( ( F ` x ) = y -> y = ( F ` x ) ) | 
						
							| 11 | 10 | 3ad2ant3 |  |-  ( ( ph /\ x e. A /\ ( F ` x ) = y ) -> y = ( F ` x ) ) | 
						
							| 12 | 3 | 3adant3 |  |-  ( ( ph /\ x e. A /\ ( F ` x ) = y ) -> ( F ` x ) e. B ) | 
						
							| 13 | 11 12 | eqeltrd |  |-  ( ( ph /\ x e. A /\ ( F ` x ) = y ) -> y e. B ) | 
						
							| 14 | 13 | 3exp |  |-  ( ph -> ( x e. A -> ( ( F ` x ) = y -> y e. B ) ) ) | 
						
							| 15 | 14 | adantr |  |-  ( ( ph /\ y e. ( F " A ) ) -> ( x e. A -> ( ( F ` x ) = y -> y e. B ) ) ) | 
						
							| 16 | 7 8 15 | rexlimd |  |-  ( ( ph /\ y e. ( F " A ) ) -> ( E. x e. A ( F ` x ) = y -> y e. B ) ) | 
						
							| 17 | 5 16 | mpd |  |-  ( ( ph /\ y e. ( F " A ) ) -> y e. B ) | 
						
							| 18 | 17 | ex |  |-  ( ph -> ( y e. ( F " A ) -> y e. B ) ) | 
						
							| 19 | 18 | ssrdv |  |-  ( ph -> ( F " A ) C_ B ) |