Description: A function is a union of singletons of ordered pairs indexed by its domain. (Contributed by AV, 18-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | funiun | |- ( Fun F -> F = U_ x e. dom F { <. x , ( F ` x ) >. } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfn | |- ( Fun F <-> F Fn dom F ) |
|
2 | dffn5 | |- ( F Fn dom F <-> F = ( x e. dom F |-> ( F ` x ) ) ) |
|
3 | 1 2 | sylbb | |- ( Fun F -> F = ( x e. dom F |-> ( F ` x ) ) ) |
4 | fvex | |- ( F ` x ) e. _V |
|
5 | 4 | dfmpt | |- ( x e. dom F |-> ( F ` x ) ) = U_ x e. dom F { <. x , ( F ` x ) >. } |
6 | 3 5 | eqtrdi | |- ( Fun F -> F = U_ x e. dom F { <. x , ( F ` x ) >. } ) |