Description: The indexed union of a function's values is the union of its image under the index class.
Note: This theorem depends on the fact that our function value is the empty set outside of its domain. If the antecedent is changed to F Fn A , the theorem can be proved without this dependency. (Contributed by NM, 26-Mar-2006) (Proof shortened by Mario Carneiro, 31-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | funiunfv | |- ( Fun F -> U_ x e. A ( F ` x ) = U. ( F " A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funres | |- ( Fun F -> Fun ( F |` A ) ) |
|
2 | 1 | funfnd | |- ( Fun F -> ( F |` A ) Fn dom ( F |` A ) ) |
3 | fniunfv | |- ( ( F |` A ) Fn dom ( F |` A ) -> U_ x e. dom ( F |` A ) ( ( F |` A ) ` x ) = U. ran ( F |` A ) ) |
|
4 | 2 3 | syl | |- ( Fun F -> U_ x e. dom ( F |` A ) ( ( F |` A ) ` x ) = U. ran ( F |` A ) ) |
5 | undif2 | |- ( dom ( F |` A ) u. ( A \ dom ( F |` A ) ) ) = ( dom ( F |` A ) u. A ) |
|
6 | dmres | |- dom ( F |` A ) = ( A i^i dom F ) |
|
7 | inss1 | |- ( A i^i dom F ) C_ A |
|
8 | 6 7 | eqsstri | |- dom ( F |` A ) C_ A |
9 | ssequn1 | |- ( dom ( F |` A ) C_ A <-> ( dom ( F |` A ) u. A ) = A ) |
|
10 | 8 9 | mpbi | |- ( dom ( F |` A ) u. A ) = A |
11 | 5 10 | eqtri | |- ( dom ( F |` A ) u. ( A \ dom ( F |` A ) ) ) = A |
12 | iuneq1 | |- ( ( dom ( F |` A ) u. ( A \ dom ( F |` A ) ) ) = A -> U_ x e. ( dom ( F |` A ) u. ( A \ dom ( F |` A ) ) ) ( ( F |` A ) ` x ) = U_ x e. A ( ( F |` A ) ` x ) ) |
|
13 | 11 12 | ax-mp | |- U_ x e. ( dom ( F |` A ) u. ( A \ dom ( F |` A ) ) ) ( ( F |` A ) ` x ) = U_ x e. A ( ( F |` A ) ` x ) |
14 | iunxun | |- U_ x e. ( dom ( F |` A ) u. ( A \ dom ( F |` A ) ) ) ( ( F |` A ) ` x ) = ( U_ x e. dom ( F |` A ) ( ( F |` A ) ` x ) u. U_ x e. ( A \ dom ( F |` A ) ) ( ( F |` A ) ` x ) ) |
|
15 | eldifn | |- ( x e. ( A \ dom ( F |` A ) ) -> -. x e. dom ( F |` A ) ) |
|
16 | ndmfv | |- ( -. x e. dom ( F |` A ) -> ( ( F |` A ) ` x ) = (/) ) |
|
17 | 15 16 | syl | |- ( x e. ( A \ dom ( F |` A ) ) -> ( ( F |` A ) ` x ) = (/) ) |
18 | 17 | iuneq2i | |- U_ x e. ( A \ dom ( F |` A ) ) ( ( F |` A ) ` x ) = U_ x e. ( A \ dom ( F |` A ) ) (/) |
19 | iun0 | |- U_ x e. ( A \ dom ( F |` A ) ) (/) = (/) |
|
20 | 18 19 | eqtri | |- U_ x e. ( A \ dom ( F |` A ) ) ( ( F |` A ) ` x ) = (/) |
21 | 20 | uneq2i | |- ( U_ x e. dom ( F |` A ) ( ( F |` A ) ` x ) u. U_ x e. ( A \ dom ( F |` A ) ) ( ( F |` A ) ` x ) ) = ( U_ x e. dom ( F |` A ) ( ( F |` A ) ` x ) u. (/) ) |
22 | un0 | |- ( U_ x e. dom ( F |` A ) ( ( F |` A ) ` x ) u. (/) ) = U_ x e. dom ( F |` A ) ( ( F |` A ) ` x ) |
|
23 | 21 22 | eqtri | |- ( U_ x e. dom ( F |` A ) ( ( F |` A ) ` x ) u. U_ x e. ( A \ dom ( F |` A ) ) ( ( F |` A ) ` x ) ) = U_ x e. dom ( F |` A ) ( ( F |` A ) ` x ) |
24 | 14 23 | eqtri | |- U_ x e. ( dom ( F |` A ) u. ( A \ dom ( F |` A ) ) ) ( ( F |` A ) ` x ) = U_ x e. dom ( F |` A ) ( ( F |` A ) ` x ) |
25 | fvres | |- ( x e. A -> ( ( F |` A ) ` x ) = ( F ` x ) ) |
|
26 | 25 | iuneq2i | |- U_ x e. A ( ( F |` A ) ` x ) = U_ x e. A ( F ` x ) |
27 | 13 24 26 | 3eqtr3ri | |- U_ x e. A ( F ` x ) = U_ x e. dom ( F |` A ) ( ( F |` A ) ` x ) |
28 | df-ima | |- ( F " A ) = ran ( F |` A ) |
|
29 | 28 | unieqi | |- U. ( F " A ) = U. ran ( F |` A ) |
30 | 4 27 29 | 3eqtr4g | |- ( Fun F -> U_ x e. A ( F ` x ) = U. ( F " A ) ) |