Description: The indexed union of a function's values is the union of its image under the index class.
Note: This theorem depends on the fact that our function value is the empty set outside of its domain. If the antecedent is changed to F Fn A , the theorem can be proved without this dependency. (Contributed by NM, 26-Mar-2006) (Proof shortened by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funiunfv | |- ( Fun F -> U_ x e. A ( F ` x ) = U. ( F " A ) )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | funres | |- ( Fun F -> Fun ( F |` A ) )  | 
						|
| 2 | 1 | funfnd | |- ( Fun F -> ( F |` A ) Fn dom ( F |` A ) )  | 
						
| 3 | fniunfv | |- ( ( F |` A ) Fn dom ( F |` A ) -> U_ x e. dom ( F |` A ) ( ( F |` A ) ` x ) = U. ran ( F |` A ) )  | 
						|
| 4 | 2 3 | syl | |- ( Fun F -> U_ x e. dom ( F |` A ) ( ( F |` A ) ` x ) = U. ran ( F |` A ) )  | 
						
| 5 | undif2 | |- ( dom ( F |` A ) u. ( A \ dom ( F |` A ) ) ) = ( dom ( F |` A ) u. A )  | 
						|
| 6 | dmres | |- dom ( F |` A ) = ( A i^i dom F )  | 
						|
| 7 | inss1 | |- ( A i^i dom F ) C_ A  | 
						|
| 8 | 6 7 | eqsstri | |- dom ( F |` A ) C_ A  | 
						
| 9 | ssequn1 | |- ( dom ( F |` A ) C_ A <-> ( dom ( F |` A ) u. A ) = A )  | 
						|
| 10 | 8 9 | mpbi | |- ( dom ( F |` A ) u. A ) = A  | 
						
| 11 | 5 10 | eqtri | |- ( dom ( F |` A ) u. ( A \ dom ( F |` A ) ) ) = A  | 
						
| 12 | iuneq1 | |- ( ( dom ( F |` A ) u. ( A \ dom ( F |` A ) ) ) = A -> U_ x e. ( dom ( F |` A ) u. ( A \ dom ( F |` A ) ) ) ( ( F |` A ) ` x ) = U_ x e. A ( ( F |` A ) ` x ) )  | 
						|
| 13 | 11 12 | ax-mp | |- U_ x e. ( dom ( F |` A ) u. ( A \ dom ( F |` A ) ) ) ( ( F |` A ) ` x ) = U_ x e. A ( ( F |` A ) ` x )  | 
						
| 14 | iunxun | |- U_ x e. ( dom ( F |` A ) u. ( A \ dom ( F |` A ) ) ) ( ( F |` A ) ` x ) = ( U_ x e. dom ( F |` A ) ( ( F |` A ) ` x ) u. U_ x e. ( A \ dom ( F |` A ) ) ( ( F |` A ) ` x ) )  | 
						|
| 15 | eldifn | |- ( x e. ( A \ dom ( F |` A ) ) -> -. x e. dom ( F |` A ) )  | 
						|
| 16 | ndmfv | |- ( -. x e. dom ( F |` A ) -> ( ( F |` A ) ` x ) = (/) )  | 
						|
| 17 | 15 16 | syl | |- ( x e. ( A \ dom ( F |` A ) ) -> ( ( F |` A ) ` x ) = (/) )  | 
						
| 18 | 17 | iuneq2i | |- U_ x e. ( A \ dom ( F |` A ) ) ( ( F |` A ) ` x ) = U_ x e. ( A \ dom ( F |` A ) ) (/)  | 
						
| 19 | iun0 | |- U_ x e. ( A \ dom ( F |` A ) ) (/) = (/)  | 
						|
| 20 | 18 19 | eqtri | |- U_ x e. ( A \ dom ( F |` A ) ) ( ( F |` A ) ` x ) = (/)  | 
						
| 21 | 20 | uneq2i | |- ( U_ x e. dom ( F |` A ) ( ( F |` A ) ` x ) u. U_ x e. ( A \ dom ( F |` A ) ) ( ( F |` A ) ` x ) ) = ( U_ x e. dom ( F |` A ) ( ( F |` A ) ` x ) u. (/) )  | 
						
| 22 | un0 | |- ( U_ x e. dom ( F |` A ) ( ( F |` A ) ` x ) u. (/) ) = U_ x e. dom ( F |` A ) ( ( F |` A ) ` x )  | 
						|
| 23 | 21 22 | eqtri | |- ( U_ x e. dom ( F |` A ) ( ( F |` A ) ` x ) u. U_ x e. ( A \ dom ( F |` A ) ) ( ( F |` A ) ` x ) ) = U_ x e. dom ( F |` A ) ( ( F |` A ) ` x )  | 
						
| 24 | 14 23 | eqtri | |- U_ x e. ( dom ( F |` A ) u. ( A \ dom ( F |` A ) ) ) ( ( F |` A ) ` x ) = U_ x e. dom ( F |` A ) ( ( F |` A ) ` x )  | 
						
| 25 | fvres | |- ( x e. A -> ( ( F |` A ) ` x ) = ( F ` x ) )  | 
						|
| 26 | 25 | iuneq2i | |- U_ x e. A ( ( F |` A ) ` x ) = U_ x e. A ( F ` x )  | 
						
| 27 | 13 24 26 | 3eqtr3ri | |- U_ x e. A ( F ` x ) = U_ x e. dom ( F |` A ) ( ( F |` A ) ` x )  | 
						
| 28 | df-ima | |- ( F " A ) = ran ( F |` A )  | 
						|
| 29 | 28 | unieqi | |- U. ( F " A ) = U. ran ( F |` A )  | 
						
| 30 | 4 27 29 | 3eqtr4g | |- ( Fun F -> U_ x e. A ( F ` x ) = U. ( F " A ) )  |