Description: The indexed union of a function's values is the union of its image under the index class. This version of funiunfv uses a bound-variable hypothesis in place of a distinct variable condition. (Contributed by NM, 26-Mar-2006) (Revised by David Abernethy, 15-Apr-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | funiunfvf.1 | |- F/_ x F |
|
| Assertion | funiunfvf | |- ( Fun F -> U_ x e. A ( F ` x ) = U. ( F " A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funiunfvf.1 | |- F/_ x F |
|
| 2 | nfcv | |- F/_ x z |
|
| 3 | 1 2 | nffv | |- F/_ x ( F ` z ) |
| 4 | nfcv | |- F/_ z ( F ` x ) |
|
| 5 | fveq2 | |- ( z = x -> ( F ` z ) = ( F ` x ) ) |
|
| 6 | 3 4 5 | cbviun | |- U_ z e. A ( F ` z ) = U_ x e. A ( F ` x ) |
| 7 | funiunfv | |- ( Fun F -> U_ z e. A ( F ` z ) = U. ( F " A ) ) |
|
| 8 | 6 7 | eqtr3id | |- ( Fun F -> U_ x e. A ( F ` x ) = U. ( F " A ) ) |