Metamath Proof Explorer


Theorem funmpt

Description: A function in maps-to notation is a function. (Contributed by Mario Carneiro, 13-Jan-2013)

Ref Expression
Assertion funmpt
|- Fun ( x e. A |-> B )

Proof

Step Hyp Ref Expression
1 funopab4
 |-  Fun { <. x , y >. | ( x e. A /\ y = B ) }
2 df-mpt
 |-  ( x e. A |-> B ) = { <. x , y >. | ( x e. A /\ y = B ) }
3 2 funeqi
 |-  ( Fun ( x e. A |-> B ) <-> Fun { <. x , y >. | ( x e. A /\ y = B ) } )
4 1 3 mpbir
 |-  Fun ( x e. A |-> B )