| Step | Hyp | Ref | Expression | 
						
							| 1 |  | funopsn.x |  |-  X e. _V | 
						
							| 2 |  | funopsn.y |  |-  Y e. _V | 
						
							| 3 |  | eqid |  |-  <. X , Y >. = <. X , Y >. | 
						
							| 4 | 1 2 | funopsn |  |-  ( ( Fun <. X , Y >. /\ <. X , Y >. = <. X , Y >. ) -> E. a ( X = { a } /\ <. X , Y >. = { <. a , a >. } ) ) | 
						
							| 5 | 3 4 | mpan2 |  |-  ( Fun <. X , Y >. -> E. a ( X = { a } /\ <. X , Y >. = { <. a , a >. } ) ) | 
						
							| 6 |  | vex |  |-  a e. _V | 
						
							| 7 | 6 6 | funsn |  |-  Fun { <. a , a >. } | 
						
							| 8 |  | funeq |  |-  ( <. X , Y >. = { <. a , a >. } -> ( Fun <. X , Y >. <-> Fun { <. a , a >. } ) ) | 
						
							| 9 | 7 8 | mpbiri |  |-  ( <. X , Y >. = { <. a , a >. } -> Fun <. X , Y >. ) | 
						
							| 10 | 9 | adantl |  |-  ( ( X = { a } /\ <. X , Y >. = { <. a , a >. } ) -> Fun <. X , Y >. ) | 
						
							| 11 | 10 | exlimiv |  |-  ( E. a ( X = { a } /\ <. X , Y >. = { <. a , a >. } ) -> Fun <. X , Y >. ) | 
						
							| 12 | 5 11 | impbii |  |-  ( Fun <. X , Y >. <-> E. a ( X = { a } /\ <. X , Y >. = { <. a , a >. } ) ) |