Step |
Hyp |
Ref |
Expression |
1 |
|
funopsn.x |
|- X e. _V |
2 |
|
funopsn.y |
|- Y e. _V |
3 |
|
eqid |
|- <. X , Y >. = <. X , Y >. |
4 |
1 2
|
funopsn |
|- ( ( Fun <. X , Y >. /\ <. X , Y >. = <. X , Y >. ) -> E. a ( X = { a } /\ <. X , Y >. = { <. a , a >. } ) ) |
5 |
3 4
|
mpan2 |
|- ( Fun <. X , Y >. -> E. a ( X = { a } /\ <. X , Y >. = { <. a , a >. } ) ) |
6 |
|
vex |
|- a e. _V |
7 |
6 6
|
funsn |
|- Fun { <. a , a >. } |
8 |
|
funeq |
|- ( <. X , Y >. = { <. a , a >. } -> ( Fun <. X , Y >. <-> Fun { <. a , a >. } ) ) |
9 |
7 8
|
mpbiri |
|- ( <. X , Y >. = { <. a , a >. } -> Fun <. X , Y >. ) |
10 |
9
|
adantl |
|- ( ( X = { a } /\ <. X , Y >. = { <. a , a >. } ) -> Fun <. X , Y >. ) |
11 |
10
|
exlimiv |
|- ( E. a ( X = { a } /\ <. X , Y >. = { <. a , a >. } ) -> Fun <. X , Y >. ) |
12 |
5 11
|
impbii |
|- ( Fun <. X , Y >. <-> E. a ( X = { a } /\ <. X , Y >. = { <. a , a >. } ) ) |