Metamath Proof Explorer


Theorem funopab4

Description: A class of ordered pairs of values in the form used by df-mpt is a function. (Contributed by NM, 17-Feb-2013)

Ref Expression
Assertion funopab4
|- Fun { <. x , y >. | ( ph /\ y = A ) }

Proof

Step Hyp Ref Expression
1 simpr
 |-  ( ( ph /\ y = A ) -> y = A )
2 1 ssopab2i
 |-  { <. x , y >. | ( ph /\ y = A ) } C_ { <. x , y >. | y = A }
3 funopabeq
 |-  Fun { <. x , y >. | y = A }
4 funss
 |-  ( { <. x , y >. | ( ph /\ y = A ) } C_ { <. x , y >. | y = A } -> ( Fun { <. x , y >. | y = A } -> Fun { <. x , y >. | ( ph /\ y = A ) } ) )
5 2 3 4 mp2
 |-  Fun { <. x , y >. | ( ph /\ y = A ) }