Step |
Hyp |
Ref |
Expression |
1 |
|
funopdmsn.g |
|- G = <. X , Y >. |
2 |
|
funopdmsn.x |
|- X e. V |
3 |
|
funopdmsn.y |
|- Y e. W |
4 |
1
|
funeqi |
|- ( Fun G <-> Fun <. X , Y >. ) |
5 |
2
|
elexi |
|- X e. _V |
6 |
3
|
elexi |
|- Y e. _V |
7 |
5 6
|
funop |
|- ( Fun <. X , Y >. <-> E. x ( X = { x } /\ <. X , Y >. = { <. x , x >. } ) ) |
8 |
4 7
|
bitri |
|- ( Fun G <-> E. x ( X = { x } /\ <. X , Y >. = { <. x , x >. } ) ) |
9 |
1
|
eqcomi |
|- <. X , Y >. = G |
10 |
9
|
eqeq1i |
|- ( <. X , Y >. = { <. x , x >. } <-> G = { <. x , x >. } ) |
11 |
|
dmeq |
|- ( G = { <. x , x >. } -> dom G = dom { <. x , x >. } ) |
12 |
|
vex |
|- x e. _V |
13 |
12
|
dmsnop |
|- dom { <. x , x >. } = { x } |
14 |
11 13
|
eqtrdi |
|- ( G = { <. x , x >. } -> dom G = { x } ) |
15 |
|
eleq2 |
|- ( dom G = { x } -> ( A e. dom G <-> A e. { x } ) ) |
16 |
|
eleq2 |
|- ( dom G = { x } -> ( B e. dom G <-> B e. { x } ) ) |
17 |
15 16
|
anbi12d |
|- ( dom G = { x } -> ( ( A e. dom G /\ B e. dom G ) <-> ( A e. { x } /\ B e. { x } ) ) ) |
18 |
|
elsni |
|- ( A e. { x } -> A = x ) |
19 |
|
elsni |
|- ( B e. { x } -> B = x ) |
20 |
|
eqtr3 |
|- ( ( A = x /\ B = x ) -> A = B ) |
21 |
18 19 20
|
syl2an |
|- ( ( A e. { x } /\ B e. { x } ) -> A = B ) |
22 |
17 21
|
syl6bi |
|- ( dom G = { x } -> ( ( A e. dom G /\ B e. dom G ) -> A = B ) ) |
23 |
14 22
|
syl |
|- ( G = { <. x , x >. } -> ( ( A e. dom G /\ B e. dom G ) -> A = B ) ) |
24 |
10 23
|
sylbi |
|- ( <. X , Y >. = { <. x , x >. } -> ( ( A e. dom G /\ B e. dom G ) -> A = B ) ) |
25 |
24
|
adantl |
|- ( ( X = { x } /\ <. X , Y >. = { <. x , x >. } ) -> ( ( A e. dom G /\ B e. dom G ) -> A = B ) ) |
26 |
25
|
exlimiv |
|- ( E. x ( X = { x } /\ <. X , Y >. = { <. x , x >. } ) -> ( ( A e. dom G /\ B e. dom G ) -> A = B ) ) |
27 |
8 26
|
sylbi |
|- ( Fun G -> ( ( A e. dom G /\ B e. dom G ) -> A = B ) ) |
28 |
27
|
3impib |
|- ( ( Fun G /\ A e. dom G /\ B e. dom G ) -> A = B ) |