| Step | Hyp | Ref | Expression | 
						
							| 1 |  | funopdmsn.g |  |-  G = <. X , Y >. | 
						
							| 2 |  | funopdmsn.x |  |-  X e. V | 
						
							| 3 |  | funopdmsn.y |  |-  Y e. W | 
						
							| 4 | 1 | funeqi |  |-  ( Fun G <-> Fun <. X , Y >. ) | 
						
							| 5 | 2 | elexi |  |-  X e. _V | 
						
							| 6 | 3 | elexi |  |-  Y e. _V | 
						
							| 7 | 5 6 | funop |  |-  ( Fun <. X , Y >. <-> E. x ( X = { x } /\ <. X , Y >. = { <. x , x >. } ) ) | 
						
							| 8 | 4 7 | bitri |  |-  ( Fun G <-> E. x ( X = { x } /\ <. X , Y >. = { <. x , x >. } ) ) | 
						
							| 9 | 1 | eqcomi |  |-  <. X , Y >. = G | 
						
							| 10 | 9 | eqeq1i |  |-  ( <. X , Y >. = { <. x , x >. } <-> G = { <. x , x >. } ) | 
						
							| 11 |  | dmeq |  |-  ( G = { <. x , x >. } -> dom G = dom { <. x , x >. } ) | 
						
							| 12 |  | vex |  |-  x e. _V | 
						
							| 13 | 12 | dmsnop |  |-  dom { <. x , x >. } = { x } | 
						
							| 14 | 11 13 | eqtrdi |  |-  ( G = { <. x , x >. } -> dom G = { x } ) | 
						
							| 15 |  | eleq2 |  |-  ( dom G = { x } -> ( A e. dom G <-> A e. { x } ) ) | 
						
							| 16 |  | eleq2 |  |-  ( dom G = { x } -> ( B e. dom G <-> B e. { x } ) ) | 
						
							| 17 | 15 16 | anbi12d |  |-  ( dom G = { x } -> ( ( A e. dom G /\ B e. dom G ) <-> ( A e. { x } /\ B e. { x } ) ) ) | 
						
							| 18 |  | elsni |  |-  ( A e. { x } -> A = x ) | 
						
							| 19 |  | elsni |  |-  ( B e. { x } -> B = x ) | 
						
							| 20 |  | eqtr3 |  |-  ( ( A = x /\ B = x ) -> A = B ) | 
						
							| 21 | 18 19 20 | syl2an |  |-  ( ( A e. { x } /\ B e. { x } ) -> A = B ) | 
						
							| 22 | 17 21 | biimtrdi |  |-  ( dom G = { x } -> ( ( A e. dom G /\ B e. dom G ) -> A = B ) ) | 
						
							| 23 | 14 22 | syl |  |-  ( G = { <. x , x >. } -> ( ( A e. dom G /\ B e. dom G ) -> A = B ) ) | 
						
							| 24 | 10 23 | sylbi |  |-  ( <. X , Y >. = { <. x , x >. } -> ( ( A e. dom G /\ B e. dom G ) -> A = B ) ) | 
						
							| 25 | 24 | adantl |  |-  ( ( X = { x } /\ <. X , Y >. = { <. x , x >. } ) -> ( ( A e. dom G /\ B e. dom G ) -> A = B ) ) | 
						
							| 26 | 25 | exlimiv |  |-  ( E. x ( X = { x } /\ <. X , Y >. = { <. x , x >. } ) -> ( ( A e. dom G /\ B e. dom G ) -> A = B ) ) | 
						
							| 27 | 8 26 | sylbi |  |-  ( Fun G -> ( ( A e. dom G /\ B e. dom G ) -> A = B ) ) | 
						
							| 28 | 27 | 3impib |  |-  ( ( Fun G /\ A e. dom G /\ B e. dom G ) -> A = B ) |