Step |
Hyp |
Ref |
Expression |
1 |
|
opeq1 |
|- ( u = A -> <. u , t >. = <. A , t >. ) |
2 |
1
|
funeqd |
|- ( u = A -> ( Fun <. u , t >. <-> Fun <. A , t >. ) ) |
3 |
|
eqeq1 |
|- ( u = A -> ( u = t <-> A = t ) ) |
4 |
2 3
|
imbi12d |
|- ( u = A -> ( ( Fun <. u , t >. -> u = t ) <-> ( Fun <. A , t >. -> A = t ) ) ) |
5 |
|
opeq2 |
|- ( t = B -> <. A , t >. = <. A , B >. ) |
6 |
5
|
funeqd |
|- ( t = B -> ( Fun <. A , t >. <-> Fun <. A , B >. ) ) |
7 |
|
eqeq2 |
|- ( t = B -> ( A = t <-> A = B ) ) |
8 |
6 7
|
imbi12d |
|- ( t = B -> ( ( Fun <. A , t >. -> A = t ) <-> ( Fun <. A , B >. -> A = B ) ) ) |
9 |
|
funrel |
|- ( Fun <. u , t >. -> Rel <. u , t >. ) |
10 |
|
vex |
|- u e. _V |
11 |
|
vex |
|- t e. _V |
12 |
10 11
|
relop |
|- ( Rel <. u , t >. <-> E. x E. y ( u = { x } /\ t = { x , y } ) ) |
13 |
9 12
|
sylib |
|- ( Fun <. u , t >. -> E. x E. y ( u = { x } /\ t = { x , y } ) ) |
14 |
10 11
|
opth |
|- ( <. u , t >. = <. { x } , { x , y } >. <-> ( u = { x } /\ t = { x , y } ) ) |
15 |
|
vex |
|- x e. _V |
16 |
15
|
opid |
|- <. x , x >. = { { x } } |
17 |
16
|
preq1i |
|- { <. x , x >. , { { x } , { x , y } } } = { { { x } } , { { x } , { x , y } } } |
18 |
|
vex |
|- y e. _V |
19 |
15 18
|
dfop |
|- <. x , y >. = { { x } , { x , y } } |
20 |
19
|
preq2i |
|- { <. x , x >. , <. x , y >. } = { <. x , x >. , { { x } , { x , y } } } |
21 |
|
snex |
|- { x } e. _V |
22 |
|
zfpair2 |
|- { x , y } e. _V |
23 |
21 22
|
dfop |
|- <. { x } , { x , y } >. = { { { x } } , { { x } , { x , y } } } |
24 |
17 20 23
|
3eqtr4ri |
|- <. { x } , { x , y } >. = { <. x , x >. , <. x , y >. } |
25 |
24
|
eqeq2i |
|- ( <. u , t >. = <. { x } , { x , y } >. <-> <. u , t >. = { <. x , x >. , <. x , y >. } ) |
26 |
14 25
|
bitr3i |
|- ( ( u = { x } /\ t = { x , y } ) <-> <. u , t >. = { <. x , x >. , <. x , y >. } ) |
27 |
|
dffun4 |
|- ( Fun <. u , t >. <-> ( Rel <. u , t >. /\ A. z A. w A. v ( ( <. z , w >. e. <. u , t >. /\ <. z , v >. e. <. u , t >. ) -> w = v ) ) ) |
28 |
27
|
simprbi |
|- ( Fun <. u , t >. -> A. z A. w A. v ( ( <. z , w >. e. <. u , t >. /\ <. z , v >. e. <. u , t >. ) -> w = v ) ) |
29 |
|
opex |
|- <. x , x >. e. _V |
30 |
29
|
prid1 |
|- <. x , x >. e. { <. x , x >. , <. x , y >. } |
31 |
|
eleq2 |
|- ( <. u , t >. = { <. x , x >. , <. x , y >. } -> ( <. x , x >. e. <. u , t >. <-> <. x , x >. e. { <. x , x >. , <. x , y >. } ) ) |
32 |
30 31
|
mpbiri |
|- ( <. u , t >. = { <. x , x >. , <. x , y >. } -> <. x , x >. e. <. u , t >. ) |
33 |
|
opex |
|- <. x , y >. e. _V |
34 |
33
|
prid2 |
|- <. x , y >. e. { <. x , x >. , <. x , y >. } |
35 |
|
eleq2 |
|- ( <. u , t >. = { <. x , x >. , <. x , y >. } -> ( <. x , y >. e. <. u , t >. <-> <. x , y >. e. { <. x , x >. , <. x , y >. } ) ) |
36 |
34 35
|
mpbiri |
|- ( <. u , t >. = { <. x , x >. , <. x , y >. } -> <. x , y >. e. <. u , t >. ) |
37 |
32 36
|
jca |
|- ( <. u , t >. = { <. x , x >. , <. x , y >. } -> ( <. x , x >. e. <. u , t >. /\ <. x , y >. e. <. u , t >. ) ) |
38 |
|
opeq12 |
|- ( ( z = x /\ w = x ) -> <. z , w >. = <. x , x >. ) |
39 |
38
|
3adant3 |
|- ( ( z = x /\ w = x /\ v = y ) -> <. z , w >. = <. x , x >. ) |
40 |
39
|
eleq1d |
|- ( ( z = x /\ w = x /\ v = y ) -> ( <. z , w >. e. <. u , t >. <-> <. x , x >. e. <. u , t >. ) ) |
41 |
|
opeq12 |
|- ( ( z = x /\ v = y ) -> <. z , v >. = <. x , y >. ) |
42 |
41
|
3adant2 |
|- ( ( z = x /\ w = x /\ v = y ) -> <. z , v >. = <. x , y >. ) |
43 |
42
|
eleq1d |
|- ( ( z = x /\ w = x /\ v = y ) -> ( <. z , v >. e. <. u , t >. <-> <. x , y >. e. <. u , t >. ) ) |
44 |
40 43
|
anbi12d |
|- ( ( z = x /\ w = x /\ v = y ) -> ( ( <. z , w >. e. <. u , t >. /\ <. z , v >. e. <. u , t >. ) <-> ( <. x , x >. e. <. u , t >. /\ <. x , y >. e. <. u , t >. ) ) ) |
45 |
|
eqeq12 |
|- ( ( w = x /\ v = y ) -> ( w = v <-> x = y ) ) |
46 |
45
|
3adant1 |
|- ( ( z = x /\ w = x /\ v = y ) -> ( w = v <-> x = y ) ) |
47 |
44 46
|
imbi12d |
|- ( ( z = x /\ w = x /\ v = y ) -> ( ( ( <. z , w >. e. <. u , t >. /\ <. z , v >. e. <. u , t >. ) -> w = v ) <-> ( ( <. x , x >. e. <. u , t >. /\ <. x , y >. e. <. u , t >. ) -> x = y ) ) ) |
48 |
47
|
spc3gv |
|- ( ( x e. _V /\ x e. _V /\ y e. _V ) -> ( A. z A. w A. v ( ( <. z , w >. e. <. u , t >. /\ <. z , v >. e. <. u , t >. ) -> w = v ) -> ( ( <. x , x >. e. <. u , t >. /\ <. x , y >. e. <. u , t >. ) -> x = y ) ) ) |
49 |
15 15 18 48
|
mp3an |
|- ( A. z A. w A. v ( ( <. z , w >. e. <. u , t >. /\ <. z , v >. e. <. u , t >. ) -> w = v ) -> ( ( <. x , x >. e. <. u , t >. /\ <. x , y >. e. <. u , t >. ) -> x = y ) ) |
50 |
28 37 49
|
syl2im |
|- ( Fun <. u , t >. -> ( <. u , t >. = { <. x , x >. , <. x , y >. } -> x = y ) ) |
51 |
26 50
|
syl5bi |
|- ( Fun <. u , t >. -> ( ( u = { x } /\ t = { x , y } ) -> x = y ) ) |
52 |
|
dfsn2 |
|- { x } = { x , x } |
53 |
|
preq2 |
|- ( x = y -> { x , x } = { x , y } ) |
54 |
52 53
|
eqtr2id |
|- ( x = y -> { x , y } = { x } ) |
55 |
54
|
eqeq2d |
|- ( x = y -> ( t = { x , y } <-> t = { x } ) ) |
56 |
|
eqtr3 |
|- ( ( u = { x } /\ t = { x } ) -> u = t ) |
57 |
56
|
expcom |
|- ( t = { x } -> ( u = { x } -> u = t ) ) |
58 |
55 57
|
syl6bi |
|- ( x = y -> ( t = { x , y } -> ( u = { x } -> u = t ) ) ) |
59 |
58
|
com13 |
|- ( u = { x } -> ( t = { x , y } -> ( x = y -> u = t ) ) ) |
60 |
59
|
imp |
|- ( ( u = { x } /\ t = { x , y } ) -> ( x = y -> u = t ) ) |
61 |
51 60
|
sylcom |
|- ( Fun <. u , t >. -> ( ( u = { x } /\ t = { x , y } ) -> u = t ) ) |
62 |
61
|
exlimdvv |
|- ( Fun <. u , t >. -> ( E. x E. y ( u = { x } /\ t = { x , y } ) -> u = t ) ) |
63 |
13 62
|
mpd |
|- ( Fun <. u , t >. -> u = t ) |
64 |
4 8 63
|
vtocl2g |
|- ( ( A e. V /\ B e. W ) -> ( Fun <. A , B >. -> A = B ) ) |
65 |
64
|
3impia |
|- ( ( A e. V /\ B e. W /\ Fun <. A , B >. ) -> A = B ) |