Metamath Proof Explorer


Theorem funoprab

Description: "At most one" is a sufficient condition for an operation class abstraction to be a function. (Contributed by NM, 17-Mar-1995)

Ref Expression
Hypothesis funoprab.1
|- E* z ph
Assertion funoprab
|- Fun { <. <. x , y >. , z >. | ph }

Proof

Step Hyp Ref Expression
1 funoprab.1
 |-  E* z ph
2 1 gen2
 |-  A. x A. y E* z ph
3 funoprabg
 |-  ( A. x A. y E* z ph -> Fun { <. <. x , y >. , z >. | ph } )
4 2 3 ax-mp
 |-  Fun { <. <. x , y >. , z >. | ph }