| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funopsn.x |
|- X e. _V |
| 2 |
|
funopsn.y |
|- Y e. _V |
| 3 |
|
funiun |
|- ( Fun F -> F = U_ x e. dom F { <. x , ( F ` x ) >. } ) |
| 4 |
|
eqeq1 |
|- ( F = <. X , Y >. -> ( F = U_ x e. dom F { <. x , ( F ` x ) >. } <-> <. X , Y >. = U_ x e. dom F { <. x , ( F ` x ) >. } ) ) |
| 5 |
|
eqcom |
|- ( <. X , Y >. = U_ x e. dom F { <. x , ( F ` x ) >. } <-> U_ x e. dom F { <. x , ( F ` x ) >. } = <. X , Y >. ) |
| 6 |
4 5
|
bitrdi |
|- ( F = <. X , Y >. -> ( F = U_ x e. dom F { <. x , ( F ` x ) >. } <-> U_ x e. dom F { <. x , ( F ` x ) >. } = <. X , Y >. ) ) |
| 7 |
6
|
adantl |
|- ( ( Fun F /\ F = <. X , Y >. ) -> ( F = U_ x e. dom F { <. x , ( F ` x ) >. } <-> U_ x e. dom F { <. x , ( F ` x ) >. } = <. X , Y >. ) ) |
| 8 |
1 2
|
opnzi |
|- <. X , Y >. =/= (/) |
| 9 |
|
neeq1 |
|- ( <. X , Y >. = F -> ( <. X , Y >. =/= (/) <-> F =/= (/) ) ) |
| 10 |
9
|
eqcoms |
|- ( F = <. X , Y >. -> ( <. X , Y >. =/= (/) <-> F =/= (/) ) ) |
| 11 |
|
funrel |
|- ( Fun F -> Rel F ) |
| 12 |
|
reldm0 |
|- ( Rel F -> ( F = (/) <-> dom F = (/) ) ) |
| 13 |
11 12
|
syl |
|- ( Fun F -> ( F = (/) <-> dom F = (/) ) ) |
| 14 |
13
|
biimprd |
|- ( Fun F -> ( dom F = (/) -> F = (/) ) ) |
| 15 |
14
|
necon3d |
|- ( Fun F -> ( F =/= (/) -> dom F =/= (/) ) ) |
| 16 |
15
|
com12 |
|- ( F =/= (/) -> ( Fun F -> dom F =/= (/) ) ) |
| 17 |
10 16
|
biimtrdi |
|- ( F = <. X , Y >. -> ( <. X , Y >. =/= (/) -> ( Fun F -> dom F =/= (/) ) ) ) |
| 18 |
17
|
com3l |
|- ( <. X , Y >. =/= (/) -> ( Fun F -> ( F = <. X , Y >. -> dom F =/= (/) ) ) ) |
| 19 |
18
|
impd |
|- ( <. X , Y >. =/= (/) -> ( ( Fun F /\ F = <. X , Y >. ) -> dom F =/= (/) ) ) |
| 20 |
8 19
|
ax-mp |
|- ( ( Fun F /\ F = <. X , Y >. ) -> dom F =/= (/) ) |
| 21 |
|
fvex |
|- ( F ` x ) e. _V |
| 22 |
21 1 2
|
iunopeqop |
|- ( dom F =/= (/) -> ( U_ x e. dom F { <. x , ( F ` x ) >. } = <. X , Y >. -> E. a dom F = { a } ) ) |
| 23 |
20 22
|
syl |
|- ( ( Fun F /\ F = <. X , Y >. ) -> ( U_ x e. dom F { <. x , ( F ` x ) >. } = <. X , Y >. -> E. a dom F = { a } ) ) |
| 24 |
7 23
|
sylbid |
|- ( ( Fun F /\ F = <. X , Y >. ) -> ( F = U_ x e. dom F { <. x , ( F ` x ) >. } -> E. a dom F = { a } ) ) |
| 25 |
24
|
imp |
|- ( ( ( Fun F /\ F = <. X , Y >. ) /\ F = U_ x e. dom F { <. x , ( F ` x ) >. } ) -> E. a dom F = { a } ) |
| 26 |
|
iuneq1 |
|- ( dom F = { a } -> U_ x e. dom F { <. x , ( F ` x ) >. } = U_ x e. { a } { <. x , ( F ` x ) >. } ) |
| 27 |
|
vex |
|- a e. _V |
| 28 |
|
id |
|- ( x = a -> x = a ) |
| 29 |
|
fveq2 |
|- ( x = a -> ( F ` x ) = ( F ` a ) ) |
| 30 |
28 29
|
opeq12d |
|- ( x = a -> <. x , ( F ` x ) >. = <. a , ( F ` a ) >. ) |
| 31 |
30
|
sneqd |
|- ( x = a -> { <. x , ( F ` x ) >. } = { <. a , ( F ` a ) >. } ) |
| 32 |
27 31
|
iunxsn |
|- U_ x e. { a } { <. x , ( F ` x ) >. } = { <. a , ( F ` a ) >. } |
| 33 |
26 32
|
eqtrdi |
|- ( dom F = { a } -> U_ x e. dom F { <. x , ( F ` x ) >. } = { <. a , ( F ` a ) >. } ) |
| 34 |
33
|
adantl |
|- ( ( ( Fun F /\ F = <. X , Y >. ) /\ dom F = { a } ) -> U_ x e. dom F { <. x , ( F ` x ) >. } = { <. a , ( F ` a ) >. } ) |
| 35 |
34
|
eqeq2d |
|- ( ( ( Fun F /\ F = <. X , Y >. ) /\ dom F = { a } ) -> ( F = U_ x e. dom F { <. x , ( F ` x ) >. } <-> F = { <. a , ( F ` a ) >. } ) ) |
| 36 |
|
eqeq1 |
|- ( F = <. X , Y >. -> ( F = { <. a , ( F ` a ) >. } <-> <. X , Y >. = { <. a , ( F ` a ) >. } ) ) |
| 37 |
36
|
adantl |
|- ( ( Fun F /\ F = <. X , Y >. ) -> ( F = { <. a , ( F ` a ) >. } <-> <. X , Y >. = { <. a , ( F ` a ) >. } ) ) |
| 38 |
|
eqcom |
|- ( <. X , Y >. = { <. a , ( F ` a ) >. } <-> { <. a , ( F ` a ) >. } = <. X , Y >. ) |
| 39 |
|
fvex |
|- ( F ` a ) e. _V |
| 40 |
27 39
|
snopeqop |
|- ( { <. a , ( F ` a ) >. } = <. X , Y >. <-> ( a = ( F ` a ) /\ X = Y /\ X = { a } ) ) |
| 41 |
38 40
|
sylbb |
|- ( <. X , Y >. = { <. a , ( F ` a ) >. } -> ( a = ( F ` a ) /\ X = Y /\ X = { a } ) ) |
| 42 |
37 41
|
biimtrdi |
|- ( ( Fun F /\ F = <. X , Y >. ) -> ( F = { <. a , ( F ` a ) >. } -> ( a = ( F ` a ) /\ X = Y /\ X = { a } ) ) ) |
| 43 |
42
|
imp |
|- ( ( ( Fun F /\ F = <. X , Y >. ) /\ F = { <. a , ( F ` a ) >. } ) -> ( a = ( F ` a ) /\ X = Y /\ X = { a } ) ) |
| 44 |
|
simpr3 |
|- ( ( F = { <. a , ( F ` a ) >. } /\ ( a = ( F ` a ) /\ X = Y /\ X = { a } ) ) -> X = { a } ) |
| 45 |
|
simp1 |
|- ( ( a = ( F ` a ) /\ X = Y /\ X = { a } ) -> a = ( F ` a ) ) |
| 46 |
45
|
eqcomd |
|- ( ( a = ( F ` a ) /\ X = Y /\ X = { a } ) -> ( F ` a ) = a ) |
| 47 |
46
|
opeq2d |
|- ( ( a = ( F ` a ) /\ X = Y /\ X = { a } ) -> <. a , ( F ` a ) >. = <. a , a >. ) |
| 48 |
47
|
sneqd |
|- ( ( a = ( F ` a ) /\ X = Y /\ X = { a } ) -> { <. a , ( F ` a ) >. } = { <. a , a >. } ) |
| 49 |
48
|
eqeq2d |
|- ( ( a = ( F ` a ) /\ X = Y /\ X = { a } ) -> ( F = { <. a , ( F ` a ) >. } <-> F = { <. a , a >. } ) ) |
| 50 |
49
|
biimpac |
|- ( ( F = { <. a , ( F ` a ) >. } /\ ( a = ( F ` a ) /\ X = Y /\ X = { a } ) ) -> F = { <. a , a >. } ) |
| 51 |
44 50
|
jca |
|- ( ( F = { <. a , ( F ` a ) >. } /\ ( a = ( F ` a ) /\ X = Y /\ X = { a } ) ) -> ( X = { a } /\ F = { <. a , a >. } ) ) |
| 52 |
51
|
ex |
|- ( F = { <. a , ( F ` a ) >. } -> ( ( a = ( F ` a ) /\ X = Y /\ X = { a } ) -> ( X = { a } /\ F = { <. a , a >. } ) ) ) |
| 53 |
52
|
adantl |
|- ( ( ( Fun F /\ F = <. X , Y >. ) /\ F = { <. a , ( F ` a ) >. } ) -> ( ( a = ( F ` a ) /\ X = Y /\ X = { a } ) -> ( X = { a } /\ F = { <. a , a >. } ) ) ) |
| 54 |
53
|
a1dd |
|- ( ( ( Fun F /\ F = <. X , Y >. ) /\ F = { <. a , ( F ` a ) >. } ) -> ( ( a = ( F ` a ) /\ X = Y /\ X = { a } ) -> ( dom F = { a } -> ( X = { a } /\ F = { <. a , a >. } ) ) ) ) |
| 55 |
43 54
|
mpd |
|- ( ( ( Fun F /\ F = <. X , Y >. ) /\ F = { <. a , ( F ` a ) >. } ) -> ( dom F = { a } -> ( X = { a } /\ F = { <. a , a >. } ) ) ) |
| 56 |
55
|
impancom |
|- ( ( ( Fun F /\ F = <. X , Y >. ) /\ dom F = { a } ) -> ( F = { <. a , ( F ` a ) >. } -> ( X = { a } /\ F = { <. a , a >. } ) ) ) |
| 57 |
35 56
|
sylbid |
|- ( ( ( Fun F /\ F = <. X , Y >. ) /\ dom F = { a } ) -> ( F = U_ x e. dom F { <. x , ( F ` x ) >. } -> ( X = { a } /\ F = { <. a , a >. } ) ) ) |
| 58 |
57
|
impancom |
|- ( ( ( Fun F /\ F = <. X , Y >. ) /\ F = U_ x e. dom F { <. x , ( F ` x ) >. } ) -> ( dom F = { a } -> ( X = { a } /\ F = { <. a , a >. } ) ) ) |
| 59 |
58
|
eximdv |
|- ( ( ( Fun F /\ F = <. X , Y >. ) /\ F = U_ x e. dom F { <. x , ( F ` x ) >. } ) -> ( E. a dom F = { a } -> E. a ( X = { a } /\ F = { <. a , a >. } ) ) ) |
| 60 |
25 59
|
mpd |
|- ( ( ( Fun F /\ F = <. X , Y >. ) /\ F = U_ x e. dom F { <. x , ( F ` x ) >. } ) -> E. a ( X = { a } /\ F = { <. a , a >. } ) ) |
| 61 |
3 60
|
mpidan |
|- ( ( Fun F /\ F = <. X , Y >. ) -> E. a ( X = { a } /\ F = { <. a , a >. } ) ) |