Metamath Proof Explorer


Theorem funpr

Description: A function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010)

Ref Expression
Hypotheses funpr.1
|- A e. _V
funpr.2
|- B e. _V
funpr.3
|- C e. _V
funpr.4
|- D e. _V
Assertion funpr
|- ( A =/= B -> Fun { <. A , C >. , <. B , D >. } )

Proof

Step Hyp Ref Expression
1 funpr.1
 |-  A e. _V
2 funpr.2
 |-  B e. _V
3 funpr.3
 |-  C e. _V
4 funpr.4
 |-  D e. _V
5 1 2 pm3.2i
 |-  ( A e. _V /\ B e. _V )
6 3 4 pm3.2i
 |-  ( C e. _V /\ D e. _V )
7 funprg
 |-  ( ( ( A e. _V /\ B e. _V ) /\ ( C e. _V /\ D e. _V ) /\ A =/= B ) -> Fun { <. A , C >. , <. B , D >. } )
8 5 6 7 mp3an12
 |-  ( A =/= B -> Fun { <. A , C >. , <. B , D >. } )