| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funrel |
|- ( Fun F -> Rel F ) |
| 2 |
|
resdmdfsn |
|- ( Rel F -> ( F |` ( _V \ { X } ) ) = ( F |` ( dom F \ { X } ) ) ) |
| 3 |
1 2
|
syl |
|- ( Fun F -> ( F |` ( _V \ { X } ) ) = ( F |` ( dom F \ { X } ) ) ) |
| 4 |
3
|
adantr |
|- ( ( Fun F /\ X e. dom F ) -> ( F |` ( _V \ { X } ) ) = ( F |` ( dom F \ { X } ) ) ) |
| 5 |
4
|
uneq1d |
|- ( ( Fun F /\ X e. dom F ) -> ( ( F |` ( _V \ { X } ) ) u. { <. X , ( F ` X ) >. } ) = ( ( F |` ( dom F \ { X } ) ) u. { <. X , ( F ` X ) >. } ) ) |
| 6 |
|
funfn |
|- ( Fun F <-> F Fn dom F ) |
| 7 |
|
fnsnsplit |
|- ( ( F Fn dom F /\ X e. dom F ) -> F = ( ( F |` ( dom F \ { X } ) ) u. { <. X , ( F ` X ) >. } ) ) |
| 8 |
6 7
|
sylanb |
|- ( ( Fun F /\ X e. dom F ) -> F = ( ( F |` ( dom F \ { X } ) ) u. { <. X , ( F ` X ) >. } ) ) |
| 9 |
5 8
|
eqtr4d |
|- ( ( Fun F /\ X e. dom F ) -> ( ( F |` ( _V \ { X } ) ) u. { <. X , ( F ` X ) >. } ) = F ) |