Step |
Hyp |
Ref |
Expression |
1 |
|
resundir |
|- ( ( A u. B ) |` dom A ) = ( ( A |` dom A ) u. ( B |` dom A ) ) |
2 |
|
resdm |
|- ( Rel A -> ( A |` dom A ) = A ) |
3 |
2
|
adantr |
|- ( ( Rel A /\ ( dom A i^i dom B ) = (/) ) -> ( A |` dom A ) = A ) |
4 |
|
dmres |
|- dom ( B |` dom A ) = ( dom A i^i dom B ) |
5 |
|
simpr |
|- ( ( Rel A /\ ( dom A i^i dom B ) = (/) ) -> ( dom A i^i dom B ) = (/) ) |
6 |
4 5
|
syl5eq |
|- ( ( Rel A /\ ( dom A i^i dom B ) = (/) ) -> dom ( B |` dom A ) = (/) ) |
7 |
|
relres |
|- Rel ( B |` dom A ) |
8 |
|
reldm0 |
|- ( Rel ( B |` dom A ) -> ( ( B |` dom A ) = (/) <-> dom ( B |` dom A ) = (/) ) ) |
9 |
7 8
|
ax-mp |
|- ( ( B |` dom A ) = (/) <-> dom ( B |` dom A ) = (/) ) |
10 |
6 9
|
sylibr |
|- ( ( Rel A /\ ( dom A i^i dom B ) = (/) ) -> ( B |` dom A ) = (/) ) |
11 |
3 10
|
uneq12d |
|- ( ( Rel A /\ ( dom A i^i dom B ) = (/) ) -> ( ( A |` dom A ) u. ( B |` dom A ) ) = ( A u. (/) ) ) |
12 |
|
un0 |
|- ( A u. (/) ) = A |
13 |
11 12
|
eqtrdi |
|- ( ( Rel A /\ ( dom A i^i dom B ) = (/) ) -> ( ( A |` dom A ) u. ( B |` dom A ) ) = A ) |
14 |
1 13
|
syl5eq |
|- ( ( Rel A /\ ( dom A i^i dom B ) = (/) ) -> ( ( A u. B ) |` dom A ) = A ) |