| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funfn |
|- ( Fun F <-> F Fn dom F ) |
| 2 |
|
fnressn |
|- ( ( F Fn dom F /\ B e. dom F ) -> ( F |` { B } ) = { <. B , ( F ` B ) >. } ) |
| 3 |
1 2
|
sylanb |
|- ( ( Fun F /\ B e. dom F ) -> ( F |` { B } ) = { <. B , ( F ` B ) >. } ) |
| 4 |
|
eqimss |
|- ( ( F |` { B } ) = { <. B , ( F ` B ) >. } -> ( F |` { B } ) C_ { <. B , ( F ` B ) >. } ) |
| 5 |
3 4
|
syl |
|- ( ( Fun F /\ B e. dom F ) -> ( F |` { B } ) C_ { <. B , ( F ` B ) >. } ) |
| 6 |
|
disjsn |
|- ( ( dom F i^i { B } ) = (/) <-> -. B e. dom F ) |
| 7 |
|
fnresdisj |
|- ( F Fn dom F -> ( ( dom F i^i { B } ) = (/) <-> ( F |` { B } ) = (/) ) ) |
| 8 |
1 7
|
sylbi |
|- ( Fun F -> ( ( dom F i^i { B } ) = (/) <-> ( F |` { B } ) = (/) ) ) |
| 9 |
6 8
|
bitr3id |
|- ( Fun F -> ( -. B e. dom F <-> ( F |` { B } ) = (/) ) ) |
| 10 |
9
|
biimpa |
|- ( ( Fun F /\ -. B e. dom F ) -> ( F |` { B } ) = (/) ) |
| 11 |
|
0ss |
|- (/) C_ { <. B , ( F ` B ) >. } |
| 12 |
10 11
|
eqsstrdi |
|- ( ( Fun F /\ -. B e. dom F ) -> ( F |` { B } ) C_ { <. B , ( F ` B ) >. } ) |
| 13 |
5 12
|
pm2.61dan |
|- ( Fun F -> ( F |` { B } ) C_ { <. B , ( F ` B ) >. } ) |