| Step | Hyp | Ref | Expression | 
						
							| 1 |  | funfn |  |-  ( Fun F <-> F Fn dom F ) | 
						
							| 2 |  | fnressn |  |-  ( ( F Fn dom F /\ B e. dom F ) -> ( F |` { B } ) = { <. B , ( F ` B ) >. } ) | 
						
							| 3 | 1 2 | sylanb |  |-  ( ( Fun F /\ B e. dom F ) -> ( F |` { B } ) = { <. B , ( F ` B ) >. } ) | 
						
							| 4 |  | eqimss |  |-  ( ( F |` { B } ) = { <. B , ( F ` B ) >. } -> ( F |` { B } ) C_ { <. B , ( F ` B ) >. } ) | 
						
							| 5 | 3 4 | syl |  |-  ( ( Fun F /\ B e. dom F ) -> ( F |` { B } ) C_ { <. B , ( F ` B ) >. } ) | 
						
							| 6 |  | disjsn |  |-  ( ( dom F i^i { B } ) = (/) <-> -. B e. dom F ) | 
						
							| 7 |  | fnresdisj |  |-  ( F Fn dom F -> ( ( dom F i^i { B } ) = (/) <-> ( F |` { B } ) = (/) ) ) | 
						
							| 8 | 1 7 | sylbi |  |-  ( Fun F -> ( ( dom F i^i { B } ) = (/) <-> ( F |` { B } ) = (/) ) ) | 
						
							| 9 | 6 8 | bitr3id |  |-  ( Fun F -> ( -. B e. dom F <-> ( F |` { B } ) = (/) ) ) | 
						
							| 10 | 9 | biimpa |  |-  ( ( Fun F /\ -. B e. dom F ) -> ( F |` { B } ) = (/) ) | 
						
							| 11 |  | 0ss |  |-  (/) C_ { <. B , ( F ` B ) >. } | 
						
							| 12 | 10 11 | eqsstrdi |  |-  ( ( Fun F /\ -. B e. dom F ) -> ( F |` { B } ) C_ { <. B , ( F ` B ) >. } ) | 
						
							| 13 | 5 12 | pm2.61dan |  |-  ( Fun F -> ( F |` { B } ) C_ { <. B , ( F ` B ) >. } ) |