Metamath Proof Explorer


Theorem funsn

Description: A singleton of an ordered pair is a function. Theorem 10.5 of Quine p. 65. (Contributed by NM, 12-Aug-1994)

Ref Expression
Hypotheses funsn.1
|- A e. _V
funsn.2
|- B e. _V
Assertion funsn
|- Fun { <. A , B >. }

Proof

Step Hyp Ref Expression
1 funsn.1
 |-  A e. _V
2 funsn.2
 |-  B e. _V
3 funsng
 |-  ( ( A e. _V /\ B e. _V ) -> Fun { <. A , B >. } )
4 1 2 3 mp2an
 |-  Fun { <. A , B >. }