| Step | Hyp | Ref | Expression | 
						
							| 1 |  | funsndifnop.a |  |-  A e. _V | 
						
							| 2 |  | funsndifnop.b |  |-  B e. _V | 
						
							| 3 |  | funsndifnop.g |  |-  G = { <. A , B >. } | 
						
							| 4 |  | elvv |  |-  ( G e. ( _V X. _V ) <-> E. x E. y G = <. x , y >. ) | 
						
							| 5 | 1 2 | funsn |  |-  Fun { <. A , B >. } | 
						
							| 6 |  | funeq |  |-  ( G = { <. A , B >. } -> ( Fun G <-> Fun { <. A , B >. } ) ) | 
						
							| 7 | 5 6 | mpbiri |  |-  ( G = { <. A , B >. } -> Fun G ) | 
						
							| 8 | 3 7 | ax-mp |  |-  Fun G | 
						
							| 9 |  | funeq |  |-  ( G = <. x , y >. -> ( Fun G <-> Fun <. x , y >. ) ) | 
						
							| 10 |  | vex |  |-  x e. _V | 
						
							| 11 |  | vex |  |-  y e. _V | 
						
							| 12 | 10 11 | funop |  |-  ( Fun <. x , y >. <-> E. a ( x = { a } /\ <. x , y >. = { <. a , a >. } ) ) | 
						
							| 13 | 9 12 | bitrdi |  |-  ( G = <. x , y >. -> ( Fun G <-> E. a ( x = { a } /\ <. x , y >. = { <. a , a >. } ) ) ) | 
						
							| 14 |  | eqeq2 |  |-  ( <. x , y >. = { <. a , a >. } -> ( G = <. x , y >. <-> G = { <. a , a >. } ) ) | 
						
							| 15 |  | eqeq1 |  |-  ( G = { <. A , B >. } -> ( G = { <. a , a >. } <-> { <. A , B >. } = { <. a , a >. } ) ) | 
						
							| 16 |  | opex |  |-  <. A , B >. e. _V | 
						
							| 17 | 16 | sneqr |  |-  ( { <. A , B >. } = { <. a , a >. } -> <. A , B >. = <. a , a >. ) | 
						
							| 18 | 1 2 | opth |  |-  ( <. A , B >. = <. a , a >. <-> ( A = a /\ B = a ) ) | 
						
							| 19 |  | eqtr3 |  |-  ( ( A = a /\ B = a ) -> A = B ) | 
						
							| 20 | 19 | a1d |  |-  ( ( A = a /\ B = a ) -> ( x = { a } -> A = B ) ) | 
						
							| 21 | 18 20 | sylbi |  |-  ( <. A , B >. = <. a , a >. -> ( x = { a } -> A = B ) ) | 
						
							| 22 | 17 21 | syl |  |-  ( { <. A , B >. } = { <. a , a >. } -> ( x = { a } -> A = B ) ) | 
						
							| 23 | 15 22 | biimtrdi |  |-  ( G = { <. A , B >. } -> ( G = { <. a , a >. } -> ( x = { a } -> A = B ) ) ) | 
						
							| 24 | 3 23 | ax-mp |  |-  ( G = { <. a , a >. } -> ( x = { a } -> A = B ) ) | 
						
							| 25 | 14 24 | biimtrdi |  |-  ( <. x , y >. = { <. a , a >. } -> ( G = <. x , y >. -> ( x = { a } -> A = B ) ) ) | 
						
							| 26 | 25 | com23 |  |-  ( <. x , y >. = { <. a , a >. } -> ( x = { a } -> ( G = <. x , y >. -> A = B ) ) ) | 
						
							| 27 | 26 | impcom |  |-  ( ( x = { a } /\ <. x , y >. = { <. a , a >. } ) -> ( G = <. x , y >. -> A = B ) ) | 
						
							| 28 | 27 | exlimiv |  |-  ( E. a ( x = { a } /\ <. x , y >. = { <. a , a >. } ) -> ( G = <. x , y >. -> A = B ) ) | 
						
							| 29 | 28 | com12 |  |-  ( G = <. x , y >. -> ( E. a ( x = { a } /\ <. x , y >. = { <. a , a >. } ) -> A = B ) ) | 
						
							| 30 | 13 29 | sylbid |  |-  ( G = <. x , y >. -> ( Fun G -> A = B ) ) | 
						
							| 31 | 8 30 | mpi |  |-  ( G = <. x , y >. -> A = B ) | 
						
							| 32 | 31 | exlimivv |  |-  ( E. x E. y G = <. x , y >. -> A = B ) | 
						
							| 33 | 4 32 | sylbi |  |-  ( G e. ( _V X. _V ) -> A = B ) | 
						
							| 34 | 33 | necon3ai |  |-  ( A =/= B -> -. G e. ( _V X. _V ) ) |