Step |
Hyp |
Ref |
Expression |
1 |
|
funsndifnop.a |
|- A e. _V |
2 |
|
funsndifnop.b |
|- B e. _V |
3 |
|
funsndifnop.g |
|- G = { <. A , B >. } |
4 |
|
elvv |
|- ( G e. ( _V X. _V ) <-> E. x E. y G = <. x , y >. ) |
5 |
1 2
|
funsn |
|- Fun { <. A , B >. } |
6 |
|
funeq |
|- ( G = { <. A , B >. } -> ( Fun G <-> Fun { <. A , B >. } ) ) |
7 |
5 6
|
mpbiri |
|- ( G = { <. A , B >. } -> Fun G ) |
8 |
3 7
|
ax-mp |
|- Fun G |
9 |
|
funeq |
|- ( G = <. x , y >. -> ( Fun G <-> Fun <. x , y >. ) ) |
10 |
|
vex |
|- x e. _V |
11 |
|
vex |
|- y e. _V |
12 |
10 11
|
funop |
|- ( Fun <. x , y >. <-> E. a ( x = { a } /\ <. x , y >. = { <. a , a >. } ) ) |
13 |
9 12
|
bitrdi |
|- ( G = <. x , y >. -> ( Fun G <-> E. a ( x = { a } /\ <. x , y >. = { <. a , a >. } ) ) ) |
14 |
|
eqeq2 |
|- ( <. x , y >. = { <. a , a >. } -> ( G = <. x , y >. <-> G = { <. a , a >. } ) ) |
15 |
|
eqeq1 |
|- ( G = { <. A , B >. } -> ( G = { <. a , a >. } <-> { <. A , B >. } = { <. a , a >. } ) ) |
16 |
|
opex |
|- <. A , B >. e. _V |
17 |
16
|
sneqr |
|- ( { <. A , B >. } = { <. a , a >. } -> <. A , B >. = <. a , a >. ) |
18 |
1 2
|
opth |
|- ( <. A , B >. = <. a , a >. <-> ( A = a /\ B = a ) ) |
19 |
|
eqtr3 |
|- ( ( A = a /\ B = a ) -> A = B ) |
20 |
19
|
a1d |
|- ( ( A = a /\ B = a ) -> ( x = { a } -> A = B ) ) |
21 |
18 20
|
sylbi |
|- ( <. A , B >. = <. a , a >. -> ( x = { a } -> A = B ) ) |
22 |
17 21
|
syl |
|- ( { <. A , B >. } = { <. a , a >. } -> ( x = { a } -> A = B ) ) |
23 |
15 22
|
syl6bi |
|- ( G = { <. A , B >. } -> ( G = { <. a , a >. } -> ( x = { a } -> A = B ) ) ) |
24 |
3 23
|
ax-mp |
|- ( G = { <. a , a >. } -> ( x = { a } -> A = B ) ) |
25 |
14 24
|
syl6bi |
|- ( <. x , y >. = { <. a , a >. } -> ( G = <. x , y >. -> ( x = { a } -> A = B ) ) ) |
26 |
25
|
com23 |
|- ( <. x , y >. = { <. a , a >. } -> ( x = { a } -> ( G = <. x , y >. -> A = B ) ) ) |
27 |
26
|
impcom |
|- ( ( x = { a } /\ <. x , y >. = { <. a , a >. } ) -> ( G = <. x , y >. -> A = B ) ) |
28 |
27
|
exlimiv |
|- ( E. a ( x = { a } /\ <. x , y >. = { <. a , a >. } ) -> ( G = <. x , y >. -> A = B ) ) |
29 |
28
|
com12 |
|- ( G = <. x , y >. -> ( E. a ( x = { a } /\ <. x , y >. = { <. a , a >. } ) -> A = B ) ) |
30 |
13 29
|
sylbid |
|- ( G = <. x , y >. -> ( Fun G -> A = B ) ) |
31 |
8 30
|
mpi |
|- ( G = <. x , y >. -> A = B ) |
32 |
31
|
exlimivv |
|- ( E. x E. y G = <. x , y >. -> A = B ) |
33 |
4 32
|
sylbi |
|- ( G e. ( _V X. _V ) -> A = B ) |
34 |
33
|
necon3ai |
|- ( A =/= B -> -. G e. ( _V X. _V ) ) |