Metamath Proof Explorer


Theorem funsneqopb

Description: A singleton of an ordered pair is an ordered pair iff the components are equal. (Contributed by AV, 24-Sep-2020) (Avoid depending on this detail.)

Ref Expression
Hypotheses funsndifnop.a
|- A e. _V
funsndifnop.b
|- B e. _V
funsndifnop.g
|- G = { <. A , B >. }
Assertion funsneqopb
|- ( A = B <-> G e. ( _V X. _V ) )

Proof

Step Hyp Ref Expression
1 funsndifnop.a
 |-  A e. _V
2 funsndifnop.b
 |-  B e. _V
3 funsndifnop.g
 |-  G = { <. A , B >. }
4 opeq1
 |-  ( A = B -> <. A , B >. = <. B , B >. )
5 4 sneqd
 |-  ( A = B -> { <. A , B >. } = { <. B , B >. } )
6 2 snopeqopsnid
 |-  { <. B , B >. } = <. { B } , { B } >.
7 5 6 eqtrdi
 |-  ( A = B -> { <. A , B >. } = <. { B } , { B } >. )
8 3 7 syl5eq
 |-  ( A = B -> G = <. { B } , { B } >. )
9 snex
 |-  { B } e. _V
10 9 9 opelvv
 |-  <. { B } , { B } >. e. ( _V X. _V )
11 8 10 eqeltrdi
 |-  ( A = B -> G e. ( _V X. _V ) )
12 1 2 3 funsndifnop
 |-  ( A =/= B -> -. G e. ( _V X. _V ) )
13 12 necon4ai
 |-  ( G e. ( _V X. _V ) -> A = B )
14 11 13 impbii
 |-  ( A = B <-> G e. ( _V X. _V ) )