| Step | Hyp | Ref | Expression | 
						
							| 1 |  | funsndifnop.a |  |-  A e. _V | 
						
							| 2 |  | funsndifnop.b |  |-  B e. _V | 
						
							| 3 |  | funsndifnop.g |  |-  G = { <. A , B >. } | 
						
							| 4 |  | opeq1 |  |-  ( A = B -> <. A , B >. = <. B , B >. ) | 
						
							| 5 | 4 | sneqd |  |-  ( A = B -> { <. A , B >. } = { <. B , B >. } ) | 
						
							| 6 | 2 | snopeqopsnid |  |-  { <. B , B >. } = <. { B } , { B } >. | 
						
							| 7 | 5 6 | eqtrdi |  |-  ( A = B -> { <. A , B >. } = <. { B } , { B } >. ) | 
						
							| 8 | 3 7 | eqtrid |  |-  ( A = B -> G = <. { B } , { B } >. ) | 
						
							| 9 |  | snex |  |-  { B } e. _V | 
						
							| 10 | 9 9 | opelvv |  |-  <. { B } , { B } >. e. ( _V X. _V ) | 
						
							| 11 | 8 10 | eqeltrdi |  |-  ( A = B -> G e. ( _V X. _V ) ) | 
						
							| 12 | 1 2 3 | funsndifnop |  |-  ( A =/= B -> -. G e. ( _V X. _V ) ) | 
						
							| 13 | 12 | necon4ai |  |-  ( G e. ( _V X. _V ) -> A = B ) | 
						
							| 14 | 11 13 | impbii |  |-  ( A = B <-> G e. ( _V X. _V ) ) |