| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funsndifnop.a |
|- A e. _V |
| 2 |
|
funsndifnop.b |
|- B e. _V |
| 3 |
|
funsndifnop.g |
|- G = { <. A , B >. } |
| 4 |
|
opeq1 |
|- ( A = B -> <. A , B >. = <. B , B >. ) |
| 5 |
4
|
sneqd |
|- ( A = B -> { <. A , B >. } = { <. B , B >. } ) |
| 6 |
2
|
snopeqopsnid |
|- { <. B , B >. } = <. { B } , { B } >. |
| 7 |
5 6
|
eqtrdi |
|- ( A = B -> { <. A , B >. } = <. { B } , { B } >. ) |
| 8 |
3 7
|
eqtrid |
|- ( A = B -> G = <. { B } , { B } >. ) |
| 9 |
|
snex |
|- { B } e. _V |
| 10 |
9 9
|
opelvv |
|- <. { B } , { B } >. e. ( _V X. _V ) |
| 11 |
8 10
|
eqeltrdi |
|- ( A = B -> G e. ( _V X. _V ) ) |
| 12 |
1 2 3
|
funsndifnop |
|- ( A =/= B -> -. G e. ( _V X. _V ) ) |
| 13 |
12
|
necon4ai |
|- ( G e. ( _V X. _V ) -> A = B ) |
| 14 |
11 13
|
impbii |
|- ( A = B <-> G e. ( _V X. _V ) ) |