Metamath Proof Explorer


Theorem funsng

Description: A singleton of an ordered pair is a function. Theorem 10.5 of Quine p. 65. (Contributed by NM, 28-Jun-2011)

Ref Expression
Assertion funsng
|- ( ( A e. V /\ B e. W ) -> Fun { <. A , B >. } )

Proof

Step Hyp Ref Expression
1 funcnvsn
 |-  Fun `' { <. B , A >. }
2 cnvsng
 |-  ( ( B e. W /\ A e. V ) -> `' { <. B , A >. } = { <. A , B >. } )
3 2 ancoms
 |-  ( ( A e. V /\ B e. W ) -> `' { <. B , A >. } = { <. A , B >. } )
4 3 funeqd
 |-  ( ( A e. V /\ B e. W ) -> ( Fun `' { <. B , A >. } <-> Fun { <. A , B >. } ) )
5 1 4 mpbii
 |-  ( ( A e. V /\ B e. W ) -> Fun { <. A , B >. } )